These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29862765)

  • 1. [Design of Wearable Telerehabilitation Device Based on Micro-sensors].
    Meng L; Du T; Fan J; Qu Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 May; 41(3):189-192. PubMed ID: 29862765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tele-monitoring and tele-rehabilitation of the shoulder muscular-skeletal diseases through wearable systems.
    Carbonaro N; Lucchesi I; Lorusssi F; Tognetti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4410-4413. PubMed ID: 30441330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNT/Graphite/SBS Conductive Fibers for Strain Sensing in Wearable Telerehabilitation Devices.
    Walter P; Podsiadły B; Zych M; Kamiński M; Skalski A; Raczyński T; Janczak D; Jakubowska M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Inertial Sensors for Exergames and Rehabilitation
    Bethi SR; RajKumar A; Vulpi F; Raghavan P; Kapila V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4579-4582. PubMed ID: 33019013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Envisioning future cognitive telerehabilitation technologies: a co-design process with clinicians.
    How TV; Hwang AS; Green REA; Mihailidis A
    Disabil Rehabil Assist Technol; 2017 Apr; 12(3):244-261. PubMed ID: 26746683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-SORM: A digital solution for remote monitoring based on the attitude of wearable devices.
    Abbas M; Somme D; Le Bouquin Jeannès R
    Comput Methods Programs Biomed; 2021 Sep; 208():106247. PubMed ID: 34260971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable inertial sensors for human movement analysis: a five-year update.
    Picerno P; Iosa M; D'Souza C; Benedetti MG; Paolucci S; Morone G
    Expert Rev Med Devices; 2021 Dec; 18(sup1):79-94. PubMed ID: 34601995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IoT-Based Remote Pain Monitoring System: From Device to Cloud Platform.
    Yang G; Jiang M; Ouyang W; Ji G; Xie H; Rahmani AM; Liljeberg P; Tenhunen H
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1711-1719. PubMed ID: 29990259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review.
    Sethi A; Ting J; Allen M; Clark W; Weber D
    J Hand Ther; 2020; 33(2):180-187. PubMed ID: 32279878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances.
    Porciuncula F; Roto AV; Kumar D; Davis I; Roy S; Walsh CJ; Awad LN
    PM R; 2018 Sep; 10(9 Suppl 2):S220-S232. PubMed ID: 30269807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel.
    Li C; Liu D; Xu C; Wang Z; Shu S; Sun Z; Tang W; Wang ZL
    Nat Commun; 2021 May; 12(1):2950. PubMed ID: 34011979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Device to Monitor Back Movements Using an Inductive Textile Sensor.
    García Patiño A; Khoshnam M; Menon C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring.
    Yamamoto Y; Harada S; Yamamoto D; Honda W; Arie T; Akita S; Takei K
    Sci Adv; 2016 Nov; 2(11):e1601473. PubMed ID: 28138532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the Internet-Enabled System for Exercise Telerehabilitation and Cardiovascular Training.
    Dedov VN; Dedova IV
    Telemed J E Health; 2015 Jul; 21(7):575-80. PubMed ID: 25734449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time multi-agent systems for telerehabilitation scenarios.
    Calvaresi D; Marinoni M; Dragoni AF; Hilfiker R; Schumacher M
    Artif Intell Med; 2019 May; 96():217-231. PubMed ID: 30827696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of data fusion techniques and technologies for wearable health monitoring.
    King RC; Villeneuve E; White RJ; Sherratt RS; Holderbaum W; Harwin WS
    Med Eng Phys; 2017 Apr; 42():1-12. PubMed ID: 28237714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Design and Trial Operation of Tele-rehabilitation Gradient Motor Function Self-evaluating System for Stroke Patients].
    Liu H; Du T; Wang T; Fan J; Qu Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Feb; 42(2):88-91. PubMed ID: 29845805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Compliant Stream Processing Agents for Physical Rehabilitation.
    Calvaresi D; Calbimonte JP
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.