These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 29862817)

  • 1. Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study.
    Frisenda R; Stefani D; van der Zant HSJ
    Acc Chem Res; 2018 Jun; 51(6):1359-1367. PubMed ID: 29862817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation and Control of Charge Transport Through Single-Molecule Junctions.
    Wang K; Xu B
    Top Curr Chem (Cham); 2017 Feb; 375(1):17. PubMed ID: 28120303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.
    Hybertsen MS; Venkataraman L
    Acc Chem Res; 2016 Mar; 49(3):452-60. PubMed ID: 26938931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires.
    Kaliginedi V; Moreno-García P; Valkenier H; Hong W; García-Suárez VM; Buiter P; Otten JL; Hummelen JC; Lambert CJ; Wandlowski T
    J Am Chem Soc; 2012 Mar; 134(11):5262-75. PubMed ID: 22352944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy.
    Frisenda R; Perrin ML; van der Zant HSJ
    Beilstein J Nanotechnol; 2015; 6():2477-2484. PubMed ID: 26885460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation-controlled electron transport in single-molecule junctions containing oligo(phenylene ethynylene) derivatives.
    Wang LJ; Yong A; Zhou KG; Tan L; Ye J; Wu GP; Xu ZG; Zhang HL
    Chem Asian J; 2013 Aug; 8(8):1901-9. PubMed ID: 23729379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A core-shell strategy for constructing a single-molecule junction.
    Wang LJ; Zhou KG; Tan L; Wang H; Shi ZF; Wu GP; Xu ZG; Cao XP; He HX; Zhang HL
    Chemistry; 2011 Jul; 17(30):8414-23. PubMed ID: 21656581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers.
    Xing Y; Park TH; Venkatramani R; Keinan S; Beratan DN; Therien MJ; Borguet E
    J Am Chem Soc; 2010 Jun; 132(23):7946-56. PubMed ID: 20433175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.
    Liu J; Huang X; Wang F; Hong W
    Acc Chem Res; 2019 Jan; 52(1):151-160. PubMed ID: 30500161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silane and Germane Molecular Electronics.
    Su TA; Li H; Klausen RS; Kim NT; Neupane M; Leighton JL; Steigerwald ML; Venkataraman L; Nuckolls C
    Acc Chem Res; 2017 Apr; 50(4):1088-1095. PubMed ID: 28345881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive study of extended tetrathiafulvalene cruciform molecules for molecular electronics: synthesis and electrical transport measurements.
    Parker CR; Leary E; Frisenda R; Wei Z; Jennum KS; Glibstrup E; Abrahamsen PB; Santella M; Christensen MA; Della Pia EA; Li T; Gonzalez MT; Jiang X; Morsing TJ; Rubio-Bollinger G; Laursen BW; Nørgaard K; van der Zant H; Agrait N; Nielsen MB
    J Am Chem Soc; 2014 Nov; 136(47):16497-507. PubMed ID: 25375316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport regimes through an alkoxythiolated diphenyl-2,2'-bithiophene-based molecular junction diodes: critical assessment of the thermal dependence.
    Pace G; Caranzi L; Bucella SG; Canesi EV; Dell'Erba G; Bertarelli C; Caironi M
    Nanoscale; 2015 Feb; 7(5):2076-84. PubMed ID: 25559138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level.
    Liu K; Wang X; Wang F
    ACS Nano; 2008 Nov; 2(11):2315-23. PubMed ID: 19206398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-Based Molecular Junctions for Practical Molecular Electronics.
    McCreery RL
    Acc Chem Res; 2022 Oct; 55(19):2766-2779. PubMed ID: 36137180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics.
    Frisenda R; Tarkuç S; Galán E; Perrin ML; Eelkema R; Grozema FC; van der Zant HS
    Beilstein J Nanotechnol; 2015; 6():1558-67. PubMed ID: 26425407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire.
    Aragonès AC; Darwish N; Ciampi S; Jiang L; Roesch R; Ruiz E; Nijhuis CA; Díez-Pérez I
    J Am Chem Soc; 2019 Jan; 141(1):240-250. PubMed ID: 30516985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Break-junctions for investigating transport at the molecular scale.
    Schwarz F; Lörtscher E
    J Phys Condens Matter; 2014 Nov; 26(47):474201. PubMed ID: 25352355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring antiaromaticity in single-molecule junctions formed from biphenylene derivatives.
    Gantenbein M; Li X; Sangtarash S; Bai J; Olsen G; Alqorashi A; Hong W; Lambert CJ; Bryce MR
    Nanoscale; 2019 Nov; 11(43):20659-20666. PubMed ID: 31641715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.