BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29862898)

  • 1. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1652-1655. PubMed ID: 29862898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil.
    Ohhata N; Yoshida N; Egami H; Katsuragi T; Tani Y; Takagi H
    J Bacteriol; 2007 Oct; 189(19):6824-31. PubMed ID: 17675378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Hayasaki T; Takagi H
    Biosci Biotechnol Biochem; 2011; 75(1):123-7. PubMed ID: 21228466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yoshida N; Inaba S; Takagi H
    J Biosci Bioeng; 2014 Jan; 117(1):28-32. PubMed ID: 23849805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Yano T; Kedo K; Fujiyoshi T; Nagai R; Iwano M; Taguchi E; Nishida T; Takagi H
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):331-340. PubMed ID: 27717963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligotrophic Gene Expression in
    Ikeda Y; Kishimoto M; Shintani M; Yoshida N
    Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144327
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of a transcriptional regulator for oligotrophy-responsive promoter in
    Ikegaya R; Shintani M; Kimbara K; Fakuda M; Yoshida N
    Biosci Biotechnol Biochem; 2020 Apr; 84(4):865-868. PubMed ID: 31884880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Yu F; Wakamatsu M; Takagi H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5627-37. PubMed ID: 25750047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.
    Yano T; Funamizu Y; Yoshida N
    Biosci Biotechnol Biochem; 2016; 80(3):610-3. PubMed ID: 26540516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp. NCIMB12038.
    Kulakov LA; Allen CC; Lipscomb DA; Larkin MJ
    FEMS Microbiol Lett; 2000 Jan; 182(2):327-31. PubMed ID: 10620687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Peculiarities of surface-active trehalose mycolates synthesis of Rhodococcus erythropolis EK-1].
    Pyroh TP; Shevchuk TA; Klymenko IuO
    Mikrobiol Z; 2010; 72(2):10-5. PubMed ID: 20455436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus.
    Tao L; Wagner LW; Rouvière PE; Cheng Q
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):222-8. PubMed ID: 16133327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Particularities of alkane oxidation in Rhodococcus erythropolis EK-1 strain--producer of surface-active substances].
    Pyroh TP; Shevchuk TA; Klymenko IuO
    Mikrobiol Z; 2009; 71(4):9-14. PubMed ID: 19938610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.
    Martinez-Rojas E; Kurt T; Schmidt U; Meyer V; Garbe LA
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9249-58. PubMed ID: 24846734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates].
    Pirog TP; Shevchuk TA; Voloshina IN; Karpenko EV
    Prikl Biokhim Mikrobiol; 2004; 40(5):544-50. PubMed ID: 15553786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources].
    Gogotov IN; Khodakov RS
    Prikl Biokhim Mikrobiol; 2008; 44(2):207-12. PubMed ID: 18669264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown on ethanol].
    Pirog TP; Korzh IuV; Shevchuk TA; Tarasenko DA
    Mikrobiologiia; 2008; 77(6):749-57. PubMed ID: 19137713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.