These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29863194)

  • 1. Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo.
    Aldeghi M; Ross GA; Bodkin MJ; Essex JW; Knapp S; Biggin PC
    Commun Chem; 2018 Apr; 1():. PubMed ID: 29863194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Sites, Networks, And Free Energies with Grand Canonical Monte Carlo.
    Ross GA; Bodnarchuk MS; Essex JW
    J Am Chem Soc; 2015 Dec; 137(47):14930-43. PubMed ID: 26509924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing Grand Canonical Monte Carlo Methods in Drug Discovery.
    Bodnarchuk MS; Packer MJ; Haywood A
    ACS Med Chem Lett; 2020 Jan; 11(1):77-82. PubMed ID: 31938467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y; Wych DC; Samways ML; Wall ME; Essex JW; Mobley DL
    J Chem Theory Comput; 2022 Mar; 18(3):1359-1381. PubMed ID: 35148093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
    Deng J; Cui Q
    J Chem Theory Comput; 2024 Mar; 20(5):1897-1911. PubMed ID: 38417108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to calculate water binding free energies in protein-ligand complexes.
    Bodnarchuk MS; Viner R; Michel J; Essex JW
    J Chem Inf Model; 2014 Jun; 54(6):1623-33. PubMed ID: 24684745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward more potent imidazopyridine inhibitors of Candida albicans Bdf1: Modeling the role of structural waters in selective ligand binding.
    Zhou Y; Overhulse JM; Dupper NJ; Guo Y; Kashemirov BA; Wei K; Govin J; Petosa C; McKenna CE
    J Comput Chem; 2022 Dec; 43(32):2121-2130. PubMed ID: 36190786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J; Smieško M
    J Chem Inf Model; 2019 Feb; 59(2):754-765. PubMed ID: 30640456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bromodomains: Structure, function and pharmacology of inhibition.
    Ferri E; Petosa C; McKenna CE
    Biochem Pharmacol; 2016 Apr; 106():1-18. PubMed ID: 26707800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
    Samways ML; Bruce Macdonald HE; Essex JW
    J Chem Inf Model; 2020 Oct; 60(10):4436-4441. PubMed ID: 32835483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites.
    Vukovic S; Brennan PE; Huggins DJ
    J Phys Condens Matter; 2016 Sep; 28(34):344007. PubMed ID: 27367338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ; Samways ML; Ge Y; Mobley DL; Essex JW
    J Chem Theory Comput; 2023 Feb; 19(3):1050-1062. PubMed ID: 36692215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations.
    Aldeghi M; Heifetz A; Bodkin MJ; Knapp S; Biggin PC
    J Am Chem Soc; 2017 Jan; 139(2):946-957. PubMed ID: 28009512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ZA channel water-mediated interactions in the design of bromodomain-selective BET inhibitors.
    Bharatham N; Slavish PJ; Shadrick WR; Young BM; Shelat AA
    J Mol Graph Model; 2018 May; 81():197-210. PubMed ID: 29605436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical profiling of histone binding selectivity of the yeast bromodomain family.
    Zhang Q; Chakravarty S; Ghersi D; Zeng L; Plotnikov AN; Sanchez R; Zhou MM
    PLoS One; 2010 Jan; 5(1):e8903. PubMed ID: 20126658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.