These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29863194)

  • 21. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations.
    Bruce Macdonald HE; Cave-Ayland C; Ross GA; Essex JW
    J Chem Theory Comput; 2018 Dec; 14(12):6586-6597. PubMed ID: 30451501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study.
    Bortolato A; Tehan BG; Bodnarchuk MS; Essex JW; Mason JS
    J Chem Inf Model; 2013 Jul; 53(7):1700-13. PubMed ID: 23725291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structured water molecules in the binding site of bromodomains can be displaced by cosolvent.
    Huang D; Rossini E; Steiner S; Caflisch A
    ChemMedChem; 2014 Mar; 9(3):573-9. PubMed ID: 23804246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting low-druggability bromodomains: fragment based screening and inhibitor design against the BAZ2B bromodomain.
    Ferguson FM; Fedorov O; Chaikuad A; Philpott M; Muniz JR; Felletar I; von Delft F; Heightman T; Knapp S; Abell C; Ciulli A
    J Med Chem; 2013 Dec; 56(24):10183-7. PubMed ID: 24304323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water Networks in Complexes between Proteins and FDA-Approved Drugs.
    Samways ML; Bruce Macdonald HE; Taylor RD; Essex JW
    J Chem Inf Model; 2023 Jan; 63(1):387-396. PubMed ID: 36469670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization.
    Michel J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2009 Oct; 131(42):15403-11. PubMed ID: 19778066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From bench to bedside, via desktop. Recent advances in the application of cutting-edge in silico tools in the research of drugs targeting bromodomain modules.
    Myrianthopoulos V; Mikros E
    Biochem Pharmacol; 2019 Jan; 159():40-51. PubMed ID: 30414936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid estimation of hydration thermodynamics of macromolecular regions.
    Raman EP; MacKerell AD
    J Chem Phys; 2013 Aug; 139(5):055105. PubMed ID: 23927290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations.
    Soroush Barhaghi M; Torabi K; Nejahi Y; Schwiebert L; Potoff JJ
    J Chem Phys; 2018 Aug; 149(7):072318. PubMed ID: 30134670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Replica-Exchange and Standard State Binding Free Energies with Grand Canonical Monte Carlo.
    Ross GA; Bruce Macdonald HE; Cave-Ayland C; Cabedo Martinez AI; Essex JW
    J Chem Theory Comput; 2017 Dec; 13(12):6373-6381. PubMed ID: 29091438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Proteomic Profiling of Bromodomains Enables the Wide-Spectrum Evaluation of Bromodomain Inhibitors in Living Cells.
    Li X; Wu Y; Tian G; Jiang Y; Liu Z; Meng X; Bao X; Feng L; Sun H; Deng H; Li XD
    J Am Chem Soc; 2019 Jul; 141(29):11497-11505. PubMed ID: 31246451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Roles of Bromodomain Proteins in Cancer.
    Boyson SP; Gao C; Quinn K; Boyd J; Paculova H; Frietze S; Glass KC
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of CO and N
    Patt A; Simon JM; Salazar JM; Picaud S
    J Chem Phys; 2020 Nov; 153(20):204502. PubMed ID: 33261471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations.
    Yoon H; Kolev V; Warshel A
    J Phys Chem B; 2017 Oct; 121(40):9358-9365. PubMed ID: 28911225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.
    Galdeano C; Ciulli A
    Future Med Chem; 2016 Sep; 8(13):1655-80. PubMed ID: 27193077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein dynamics and structural waters in bromodomains.
    Zhang X; Chen K; Wu YD; Wiest O
    PLoS One; 2017; 12(10):e0186570. PubMed ID: 29077715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification of water molecules in protein binding sites.
    Barillari C; Taylor J; Viner R; Essex JW
    J Am Chem Soc; 2007 Mar; 129(9):2577-87. PubMed ID: 17288418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains.
    Crawford TD; Tsui V; Flynn EM; Wang S; Taylor AM; Côté A; Audia JE; Beresini MH; Burdick DJ; Cummings R; Dakin LA; Duplessis M; Good AC; Hewitt MC; Huang HR; Jayaram H; Kiefer JR; Jiang Y; Murray J; Nasveschuk CG; Pardo E; Poy F; Romero FA; Tang Y; Wang J; Xu Z; Zawadzke LE; Zhu X; Albrecht BK; Magnuson SR; Bellon S; Cochran AG
    J Med Chem; 2016 Jun; 59(11):5391-402. PubMed ID: 27219867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Basis for the N-Terminal Bromodomain-and-Extra-Terminal-Family Selectivity of a Dual Kinase-Bromodomain Inhibitor.
    Divakaran A; Talluri SK; Ayoub AM; Mishra NK; Cui H; Widen JC; Berndt N; Zhu JY; Carlson AS; Topczewski JJ; Schonbrunn EK; Harki DA; Pomerantz WCK
    J Med Chem; 2018 Oct; 61(20):9316-9334. PubMed ID: 30253095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery.
    Chung CW; Dean AW; Woolven JM; Bamborough P
    J Med Chem; 2012 Jan; 55(2):576-86. PubMed ID: 22136404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.