These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29863487)

  • 1. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.
    Li B; Jiang P; Zhai F; Chen J; Bei G; Hou X; Chou KC
    Nanotechnology; 2018 Aug; 29(35):355702. PubMed ID: 29863487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.
    Bhanushali S; Jason NN; Ghosh P; Ganesh A; Simon GP; Cheng W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18925-18935. PubMed ID: 28471162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of interface layer on the enhancement of thermal conductivity of SiC-Water nanofluids: Molecular dynamics simulation.
    Zhu Y; Chen H; Zhang J; Xiao G; Yi M; Chen Z; Xu C
    J Mol Graph Model; 2024 Mar; 127():108696. PubMed ID: 38147710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.
    Saterlie M; Sahin H; Kavlicoglu B; Liu Y; Graeve O
    Nanoscale Res Lett; 2011 Mar; 6(1):217. PubMed ID: 21711719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs.
    Maselugbo AO; Sadiku BL; Alston JR
    Nanoscale; 2023 May; 15(18):8406-8415. PubMed ID: 37092907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron nitride nanosheet nanofluids for enhanced thermal conductivity.
    Hou X; Wang M; Fu L; Chen Y; Jiang N; Lin CT; Wang Z; Yu J
    Nanoscale; 2018 Jul; 10(27):13004-13010. PubMed ID: 29682657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid.
    Graves JE; Latvytė E; Greenwood A; Emekwuru NG
    Ultrason Sonochem; 2019 Jul; 55():25-31. PubMed ID: 31084788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconductivity in carrier-doped silicon carbide.
    Muranaka T; Kikuchi Y; Yoshizawa T; Shirakawa N; Akimitsu J
    Sci Technol Adv Mater; 2008 Dec; 9(4):044204. PubMed ID: 27878021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids.
    Le Ba T; Alkurdi AQ; Lukács IE; Molnár J; Wongwises S; Gróf G; Szilágyi IM
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets.
    Mehrali M; Sadeghinezhad E; Latibari ST; Kazi SN; Mehrali M; Zubir MN; Metselaar HS
    Nanoscale Res Lett; 2014 Jan; 9(1):15. PubMed ID: 24410867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al2O3-based nanofluids: a review.
    Sridhara V; Satapathy LN
    Nanoscale Res Lett; 2011 Jul; 6(1):456. PubMed ID: 21762528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids.
    Li Y; Zhou J; Luo Z; Tung S; Schneider E; Wu J; Li X
    Nanoscale Res Lett; 2011 Jul; 6(1):443. PubMed ID: 21740586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermal conductivity of nanofluids by introducing Janus particles.
    Cui X; Wang J; Xia G
    Nanoscale; 2021 Dec; 14(1):99-107. PubMed ID: 34897350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discussion on the thermal conductivity enhancement of nanofluids.
    Xie H; Yu W; Li Y; Chen L
    Nanoscale Res Lett; 2011 Feb; 6(1):124. PubMed ID: 21711638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Conductivity and Stability of Hydrocarbon-Based Nanofluids with Palladium Nanoparticles Dispersed by Modified Hyperbranched Polyglycerol.
    Qin X; Yang S; Chen Y; Qin X; Zhao J; Fang W; Luo D
    ACS Omega; 2020 Dec; 5(48):31156-31163. PubMed ID: 33324824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids.
    Sundar LS; Singh MK; Ramana EV; Singh B; Grácio J; Sousa AC
    Sci Rep; 2014 Feb; 4():4039. PubMed ID: 24509508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.