BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29863727)

  • 41. Multiorgan microphysiological systems as tools to interrogate interorgan crosstalk and complex diseases.
    Trapecar M
    FEBS Lett; 2022 Mar; 596(5):681-695. PubMed ID: 34923635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system.
    Shinohara M; Arakawa H; Oda Y; Shiraki N; Sugiura S; Nishiuchi T; Satoh T; Iino K; Leo S; Kato Y; Araya K; Kawanishi T; Nakatsuji T; Mitsuta M; Inamura K; Goto T; Shinha K; Nihei W; Komori K; Nishikawa M; Kume S; Kato Y; Kanamori T; Sakai Y; Kimura H
    Sci Rep; 2021 Mar; 11(1):5437. PubMed ID: 33686099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microphysiological systems: What it takes for community adoption.
    Hargrove-Grimes P; Low LA; Tagle DA
    Exp Biol Med (Maywood); 2021 Jun; 246(12):1435-1446. PubMed ID: 33899539
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biofabrication of vasculature in microphysiological models of bone.
    Whelan IT; Moeendarbary E; Hoey DA; Kelly DJ
    Biofabrication; 2021 Jul; 13(3):. PubMed ID: 34034238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microphysiological modeling of the reproductive tract: a fertile endeavor.
    Eddie SL; Kim JJ; Woodruff TK; Burdette JE
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1192-202. PubMed ID: 24737736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator.
    Kanamori T; Sugiura S; Sakai Y
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):40-42. PubMed ID: 29217459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organs-on-chips: Progress, challenges, and future directions.
    Low LA; Tagle DA
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1573-1578. PubMed ID: 28343437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The vascular niche in next generation microphysiological systems.
    Ewald ML; Chen YH; Lee AP; Hughes CCW
    Lab Chip; 2021 Sep; 21(17):3244-3262. PubMed ID: 34396383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Programming microphysiological systems for children's health protection.
    Knudsen TB; Klieforth B; Slikker W
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1586-1592. PubMed ID: 28658972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations.
    Rivera KR; Yokus MA; Erb PD; Pozdin VA; Daniele M
    Analyst; 2019 May; 144(10):3190-3215. PubMed ID: 30968094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emerging Role of Organ-on-a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation.
    Isoherranen N; Madabushi R; Huang SM
    Clin Transl Sci; 2019 Mar; 12(2):113-121. PubMed ID: 30740886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. "Good Fences Make Good Neighbors": How does the Human Gut Microchip Unravel Mechanism of Intestinal Inflammation?
    Shin W; Hackley LA; Kim HJ
    Gut Microbes; 2020 May; 11(3):581-586. PubMed ID: 31198078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.
    Sung JH; Srinivasan B; Esch MB; McLamb WT; Bernabini C; Shuler ML; Hickman JJ
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1225-39. PubMed ID: 24951471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organs-on-a-Chip.
    Moyer MW
    Sci Am; 2011 Mar; 304(3):19. PubMed ID: 21438480
    [No Abstract]   [Full Text] [Related]  

  • 58. Biological and medical applications of a brain-on-a-chip.
    Pamies D; Hartung T; Hogberg HT
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1096-1107. PubMed ID: 24912505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens.
    Tronolone JJ; Lam J; Agrawal A; Sung K
    Biomed Microdevices; 2021 Apr; 23(2):25. PubMed ID: 33855605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of microphysiological systems for nonclinical evaluation of cell therapies.
    Candarlioglu P; Delsing L; Gauthier L; Lewis L; Papadopoulos G; Freag M; Chan TS; Homan K; Fellows MD; Pointon A; Kojala K
    ALTEX; 2024 May; ():. PubMed ID: 38746991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.