These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 29863784)
1. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784 [TBL] [Abstract][Full Text] [Related]
2. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860 [TBL] [Abstract][Full Text] [Related]
3. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276 [TBL] [Abstract][Full Text] [Related]
4. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries. Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750 [TBL] [Abstract][Full Text] [Related]
5. 2D Covalent Organic Framework Covalently Anchored with Carbon Nanotube as High-Performance Cathodes for Lithium and Sodium-Ion Batteries. Biswas S; Pramanik A; Dey A; Chattopadhyay S; Pieshkov TS; Bhattacharyya S; Ajayan PM; Maji TK Small; 2024 Nov; 20(48):e2406173. PubMed ID: 39225362 [TBL] [Abstract][Full Text] [Related]
6. Guiding Uniformly Distributed Li-Ion Flux by Lithiophilic Covalent Organic Framework Interlayers for High-Performance Lithium Metal Anodes. Li Z; Ji W; Wang TX; Zhang Y; Li Z; Ding X; Han BH; Feng W ACS Appl Mater Interfaces; 2021 May; 13(19):22586-22596. PubMed ID: 33951910 [TBL] [Abstract][Full Text] [Related]
7. CO Huang S; Chen D; Meng C; Wang S; Ren S; Han D; Xiao M; Sun L; Meng Y Small; 2019 Dec; 15(49):e1904830. PubMed ID: 31714015 [TBL] [Abstract][Full Text] [Related]
8. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Chen X; Li Y; Wang L; Xu Y; Nie A; Li Q; Wu F; Sun W; Zhang X; Vajtai R; Ajayan PM; Chen L; Wang Y Adv Mater; 2019 Jul; 31(29):e1901640. PubMed ID: 31155765 [TBL] [Abstract][Full Text] [Related]
9. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565 [TBL] [Abstract][Full Text] [Related]
10. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464 [TBL] [Abstract][Full Text] [Related]
11. Covalent-Organic-Framework-Based Li-CO Li X; Wang H; Chen Z; Xu HS; Yu W; Liu C; Wang X; Zhang K; Xie K; Loh KP Adv Mater; 2019 Nov; 31(48):e1905879. PubMed ID: 31609043 [TBL] [Abstract][Full Text] [Related]
13. Optimizing the Structure and Electrochemical Properties of Benzoquinone-Embedded COF via Heat Treatment for a High-Energy Organic Cathode. Amin K; Mehmood W; Zhang J; Ahmed S; Mao L; Li CF; Zhang BB; Wei Z ACS Appl Mater Interfaces; 2024 Sep; 16(37):48771-48781. PubMed ID: 37968096 [TBL] [Abstract][Full Text] [Related]
14. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Wang S; Wang Q; Shao P; Han Y; Gao X; Ma L; Yuan S; Ma X; Zhou J; Feng X; Wang B J Am Chem Soc; 2017 Mar; 139(12):4258-4261. PubMed ID: 28316238 [TBL] [Abstract][Full Text] [Related]
15. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries. Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285 [TBL] [Abstract][Full Text] [Related]
16. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries. Xu T; Yang Y; Liu T; Jing Y RSC Adv; 2023 Nov; 13(49):34724-34732. PubMed ID: 38035235 [TBL] [Abstract][Full Text] [Related]
18. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278 [TBL] [Abstract][Full Text] [Related]
19. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations. Fang L; Cao X; Cao Z J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142 [TBL] [Abstract][Full Text] [Related]
20. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries. Ren G; Cai F; Wang S; Luo Z; Yuan Z RSC Adv; 2023 Jun; 13(27):18983-18990. PubMed ID: 37362603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]