BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29864177)

  • 21. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.
    Soleimanifar H; Deng Y; Wu L; Sarkar D
    Chemosphere; 2016 Jul; 154():289-292. PubMed ID: 27060636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus release from a manure-impacted spodosol: effects of a water treatment residual.
    Silveira ML; Miyittah MK; O'Connor GA
    J Environ Qual; 2006; 35(2):529-41. PubMed ID: 16455854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of water treatment residuals on phosphorus solubility and leaching.
    Elliott HA; O'Connor GA; Lu P; Brinton S
    J Environ Qual; 2002; 31(4):1362-9. PubMed ID: 12175057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Water treatment residual as a bioretention media amendment for phosphorus removal].
    Wang JJ; Li T; Zhang Y
    Huan Jing Ke Xue; 2014 Dec; 35(12):4642-7. PubMed ID: 25826936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions.
    Caporale AG; Punamiya P; Pigna M; Violante A; Sarkar D
    J Hazard Mater; 2013 Sep; 260():644-51. PubMed ID: 23832056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative amendment for soluble phosphorus removal from poultry litter.
    Makris KC; Sarkar D; Salazar J; Punamiya P; Datta R
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):195-202. PubMed ID: 19340471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper(II) and lead(II) removal from aqueous solution by water treatment residues.
    Castaldi P; Silvetti M; Garau G; Demurtas D; Deiana S
    J Hazard Mater; 2015; 283():140-7. PubMed ID: 25262486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of myo-inositol hexakisphosphate in water using recycled water treatment residual.
    Qiu F; Wang J; Zhao D; Fu K
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29593-29604. PubMed ID: 30141166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of coagulant aluminum from water treatment residuals by acid.
    Okuda T; Nishijima W; Sugimoto M; Saka N; Nakai S; Tanabe K; Ito J; Takenaka K; Okada M
    Water Res; 2014 Sep; 60():75-81. PubMed ID: 24835954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Hazard Mater; 2009 Nov; 171(1-3):980-6. PubMed ID: 19631458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An alum-based water treatment residual can reduce extractable phosphorus concentrations in three phosphorus-enriched coastal plain soils.
    Novak JM; Watts DW
    J Environ Qual; 2005; 34(5):1820-7. PubMed ID: 16151234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selenium adsorption to aluminum-based water treatment residuals.
    Ippolito JA; Scheckel KG; Barbarick KA
    J Colloid Interface Sci; 2009 Oct; 338(1):48-55. PubMed ID: 19589535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.
    Hovsepyan A; Bonzongo JC
    J Hazard Mater; 2009 May; 164(1):73-80. PubMed ID: 18814960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A practical approach on reuse of drinking water treatment plant residuals for fluoride removal.
    Shakya AK; Bhande R; Ghosh PK
    Environ Technol; 2020 Sep; 41(22):2907-2919. PubMed ID: 30888261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of Co(II) from aqueous solutions by water treatment residuals.
    Jiao J; Zhao J; Pei Y
    J Environ Sci (China); 2017 Feb; 52():232-239. PubMed ID: 28254043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(6):2112-7. PubMed ID: 16275711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.
    Qiu X; Sasaki K; Takaki Y; Hirajima T; Ideta K; Miyawaki J
    J Hazard Mater; 2015 Apr; 287():268-77. PubMed ID: 25661174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term phosphorus immobilization by a drinking water treatment residual.
    Agyin-Birikorang S; O'Connor GA; Jacobs LW; Makris KC; Brinton SR
    J Environ Qual; 2007; 36(1):316-23. PubMed ID: 17215241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.
    Wendling LA; Douglas GB; Coleman S; Yuan Z
    Sci Total Environ; 2013 Jan; 442():63-72. PubMed ID: 23178765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.
    Punamiya P; Sarkar D; Rakshit S; Elzinga EJ; Datta R
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3322-32. PubMed ID: 26490907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.