BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29864179)

  • 1. Phosphorus Sorption to Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 2. X-Ray Absorption Spectroscopy.
    Massey MS; Zohar I; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):546-553. PubMed ID: 29864179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.
    Zohar I; Massey MS; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):538-545. PubMed ID: 29864177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).
    Zohar I; Ippolito JA; Massey MS; Litaor IM
    Chemosphere; 2017 Feb; 168():234-243. PubMed ID: 27788362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing modified aluminum-based water treatment residuals as a plant-available phosphorus source.
    Banet T; Massey MS; Zohar I; Litaor MI; Ippolito JA
    Chemosphere; 2020 May; 247():125949. PubMed ID: 31978666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-Ray Spectroscopic Quantification of Struvite and Dittmarite Recovered from Wastewater.
    Massey MS
    J Environ Qual; 2019 Jan; 48(1):193-198. PubMed ID: 30640358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(3):1112-8. PubMed ID: 15888897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.
    Zhao Y; Wendling LA; Wang C; Pei Y
    J Environ Sci (China); 2015 Aug; 34():133-42. PubMed ID: 26257356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of soil phosphorus speciation in mid-Atlantic soils using synchrotron-based microspectroscopic techniques.
    Gamble AV; Northrup PA; Sparks DL
    J Environ Qual; 2020 Jan; 49(1):184-193. PubMed ID: 33016369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation.
    Beauchemin S; Hesterberg D; Chou J; Beauchemin M; Simard RR; Sayers DE
    J Environ Qual; 2003; 32(5):1809-19. PubMed ID: 14535324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray absorption near edge structure spectroscopy reveals phosphate minerals at surface and agronomic sampling depths in agricultural Ultisols saturated with legacy phosphorus.
    Lucas E; Mosesso L; Roswall T; Yang YY; Scheckel K; Shober A; Toor GS
    Chemosphere; 2022 Dec; 308(Pt 2):136288. PubMed ID: 36058369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro and nano sized particles in leachates from agricultural soils: Phosphorus and sulfur speciation by X-ray micro-spectroscopy.
    Adediran GA; Lundberg D; Almkvist G; Pradas Del Real AE; Klysubun W; Hillier S; Gustafsson JP; Simonsson M
    Water Res; 2021 Feb; 189():116585. PubMed ID: 33171296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing soluble phosphorus removal within buffer strips using industrial by-products.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12257-69. PubMed ID: 24928382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.
    Yang J; Liu J; Dynes JJ; Peak D; Regier T; Wang J; Zhu S; Shi J; Tse JS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2943-54. PubMed ID: 24170498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.
    Prietzel J; Harrington G; Häusler W; Heister K; Werner F; Klysubun W
    J Synchrotron Radiat; 2016 Mar; 23(2):532-44. PubMed ID: 26917141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy.
    Vogel C; Rivard C; Wilken V; Muskolus A; Adam C
    Ambio; 2018 Jan; 47(Suppl 1):62-72. PubMed ID: 29159453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Hazard Mater; 2009 Nov; 171(1-3):980-6. PubMed ID: 19631458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: a field study in Florida.
    Agyin-Birikorang S; Oladeji OO; O'Connor GA; Obreza TA; Capece JC
    J Environ Qual; 2009; 38(3):1076-85. PubMed ID: 19329695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus retention mechanisms of a water treatment residual.
    Ippolito JA; Barbarick KA; Heil DM; Chandler JP; Redente EF
    J Environ Qual; 2003; 32(5):1857-64. PubMed ID: 14535330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands.
    Babatunde AO; Zhao YQ
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1314-22. PubMed ID: 20232166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.