These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29864272)
1. Probing the Reaction Interface in Li-Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity. Huang J; Tong B; Li Z; Zhou T; Zhang J; Peng Z J Phys Chem Lett; 2018 Jun; 9(12):3403-3408. PubMed ID: 29864272 [TBL] [Abstract][Full Text] [Related]
2. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. Lu YC; Shao-Horn Y J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218 [TBL] [Abstract][Full Text] [Related]
3. Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery. Yang Y; Zhang T; Wang X; Chen L; Wu N; Liu W; Lu H; Xiao L; Fu L; Zhuang L ACS Appl Mater Interfaces; 2016 Aug; 8(33):21350-7. PubMed ID: 27459128 [TBL] [Abstract][Full Text] [Related]
4. Operando observation of the gold-electrolyte interface in Li-O2 batteries. Gittleson FS; Ryu WH; Taylor AD ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060 [TBL] [Abstract][Full Text] [Related]
5. Probing the reaction interface in Li-O Huang J; Tong B Chem Commun (Camb); 2017 Oct; 53(83):11418-11421. PubMed ID: 28975180 [TBL] [Abstract][Full Text] [Related]
6. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247 [TBL] [Abstract][Full Text] [Related]
7. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
8. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O Hong M; Yang C; Wong RA; Nakao A; Choi HC; Byon HR J Am Chem Soc; 2018 May; 140(20):6190-6193. PubMed ID: 29739188 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Mesoporous/Macroporous Co-Doped NiO Nanosheet Arrays as Free-Standing Electrode Materials for Rechargeable Li-O Wang H; Wang H; Huang J; Zhou X; Wu Q; Luo Z; Wang F ACS Appl Mater Interfaces; 2019 Nov; 11(47):44556-44565. PubMed ID: 31663715 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758 [TBL] [Abstract][Full Text] [Related]
11. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death. Wang J; Zhang Y; Guo L; Wang E; Peng Z Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228 [TBL] [Abstract][Full Text] [Related]
12. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808 [TBL] [Abstract][Full Text] [Related]
13. True Reaction Sites on Discharge in Li-O Tan C; Cao D; Zheng L; Shen Y; Chen L; Chen Y J Am Chem Soc; 2022 Jan; 144(2):807-815. PubMed ID: 34991315 [TBL] [Abstract][Full Text] [Related]
14. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li Feng N; Mu X; Zhang X; He P; Zhou H ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362 [TBL] [Abstract][Full Text] [Related]
15. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. Wen R; Hong M; Byon HR J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397 [TBL] [Abstract][Full Text] [Related]
16. A QCM study of ORR-OER and an in situ study of a redox mediator in DMSO for Li-O2 batteries. Schaltin S; Vanhoutte G; Wu M; Bardé F; Fransaer J Phys Chem Chem Phys; 2015 May; 17(19):12575-86. PubMed ID: 25898788 [TBL] [Abstract][Full Text] [Related]
17. Surface Mechanism of Catalytic Electrodes in Lithium-Oxygen Batteries: How Nanostructures Mediate the Interfacial Reactions. Shen ZZ; Zhou C; Wen R; Wan LJ J Am Chem Soc; 2020 Sep; 142(37):16007-16015. PubMed ID: 32815719 [TBL] [Abstract][Full Text] [Related]
18. Relieving the "Sudden Death" of Li-O Guo L; Wang J; Gu F; Ma L; Zhao Z; Liu J; Peng Z ACS Appl Mater Interfaces; 2019 Apr; 11(16):14753-14758. PubMed ID: 30932476 [TBL] [Abstract][Full Text] [Related]
19. Morphology-Dictated Mechanism of Efficient Reaction Sites for Li Yan H; Wang WW; Wu TR; Gu Y; Li KX; Wu DY; Zheng M; Dong Q; Yan J; Mao BW J Am Chem Soc; 2023 Jun; 145(22):11959-11968. PubMed ID: 37216562 [TBL] [Abstract][Full Text] [Related]
20. Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. Peng Q; Chen J; Ji H; Morita A; Ye S J Am Chem Soc; 2018 Nov; 140(46):15568-15571. PubMed ID: 30398327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]