These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29864364)

  • 1. Stabilization of Polar Nanoregions in Pb-free Ferroelectrics.
    Pramanick A; Dmowski W; Egami T; Budisuharto AS; Weyland F; Novak N; Christianson AD; Borreguero JM; Abernathy DL; Jørgensen MRV
    Phys Rev Lett; 2018 May; 120(20):207603. PubMed ID: 29864364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase instability induced by polar nanoregions in a relaxor ferroelectric system.
    Xu G; Wen J; Stock C; Gehring PM
    Nat Mater; 2008 Jul; 7(7):562-6. PubMed ID: 18469821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-induced percolation of polar nanoregions in relaxor ferroelectrics.
    Prosandeev S; Wang D; Akbarzadeh AR; Dkhil B; Bellaiche L
    Phys Rev Lett; 2013 May; 110(20):207601. PubMed ID: 25167451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.
    Li F; Zhang S; Yang T; Xu Z; Zhang N; Liu G; Wang J; Wang J; Cheng Z; Ye ZG; Luo J; Shrout TR; Chen LQ
    Nat Commun; 2016 Dec; 7():13807. PubMed ID: 27991504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon localization drives polar nanoregions in a relaxor ferroelectric.
    Manley ME; Lynn JW; Abernathy DL; Specht ED; Delaire O; Bishop AR; Sahul R; Budai JD
    Nat Commun; 2014 Apr; 5():3683. PubMed ID: 24718289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis.
    Jeong IK; Darling TW; Lee JK; Proffen T; Heffner RH; Park JS; Hong KS; Dmowski W; Egami T
    Phys Rev Lett; 2005 Apr; 94(14):147602. PubMed ID: 15904113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations.
    Manley ME; Abernathy DL; Sahul R; Parshall DE; Lynn JW; Christianson AD; Stonaha PJ; Specht ED; Budai JD
    Sci Adv; 2016 Sep; 2(9):e1501814. PubMed ID: 27652338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.
    Buscaglia V; Tripathi S; Petkov V; Dapiaggi M; Deluca M; Gajović A; Ren Y
    J Phys Condens Matter; 2014 Feb; 26(6):065901. PubMed ID: 24441707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of polar nanoregions with weak random fields in Pb-based perovskite ferroelectrics.
    Helal MA; Aftabuzzaman M; Tsukada S; Kojima S
    Sci Rep; 2017 Mar; 7():44448. PubMed ID: 28300152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalies of Brillouin Light Scattering in Selected Perovskite Relaxor Ferroelectric Crystals.
    Sivasubramanian V; Ganesamoorthy S; Kojima S
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of polarization behavior in relaxation of BaTiO₃-based ferroelectrics using wideband dielectric spectroscopy.
    Teranishi T; Hoshina T; Takeda H; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2118-26. PubMed ID: 20889394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local lattice dynamics and the origin of the relaxor ferroelectric behavior.
    Dmowski W; Vakhrushev SB; Jeong IK; Hehlen MP; Trouw F; Egami T
    Phys Rev Lett; 2008 Apr; 100(13):137602. PubMed ID: 18517997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chemical variations on the structural polarity of relaxor ferroelectrics studied by resonance Raman spectroscopy.
    Rohrbeck A; de la Flor G; Aroyo MI; Gospodinov M; Bismayer U; Mihailova B
    J Phys Condens Matter; 2016 Nov; 28(47):475902. PubMed ID: 27661388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles-based effective Hamiltonian simulations of bulks and films made of lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics.
    Prosandeev S; Wang D; Akbarzadeh AR; Bellaiche L
    J Phys Condens Matter; 2015 Jun; 27(22):223202. PubMed ID: 25985266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferroelectric glass of spheroidal dipoles with impurities: polar nanoregions, response to applied electric field, and ergodicity breakdown.
    Takae K; Onuki A
    J Phys Condens Matter; 2017 Apr; 29(16):165401. PubMed ID: 28218895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of polar nanoregions in lead-free relaxors via piezoresponse force microscopy in torsional dual AC resonance tracking mode.
    Liu N; Dittmer R; Stark RW; Dietz C
    Nanoscale; 2015 Jul; 7(27):11787-96. PubMed ID: 26106953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric.
    Eremenko M; Krayzman V; Bosak A; Playford HY; Chapman KW; Woicik JC; Ravel B; Levin I
    Nat Commun; 2019 Jun; 10(1):2728. PubMed ID: 31227698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO₃-based solid solutions.
    Padurariu L; Enachescu C; Mitoseriu L
    J Phys Condens Matter; 2011 Aug; 23(32):325901. PubMed ID: 21785183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles.
    Akbarzadeh AR; Prosandeev S; Walter EJ; Al-Barakaty A; Bellaiche L
    Phys Rev Lett; 2012 Jun; 108(25):257601. PubMed ID: 23004657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brillouin Scattering Study of Electro-Optic KTa
    Rahaman MM; Kojima S
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.