BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29864482)

  • 1. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus.
    Kondeti VSSK; Phan CQ; Wende K; Jablonowski H; Gangal U; Granick JL; Hunter RC; Bruggeman PJ
    Free Radic Biol Med; 2018 Aug; 124():275-287. PubMed ID: 29864482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of the Staphylococcus aureus Inactivation Process Induced by a Multigas Plasma Jet.
    Takamatsu T; Kawano H; Sasaki Y; Uehara K; Miyahara H; Matsumura Y; Iwasawa A; Azuma T; Okino A
    Curr Microbiol; 2016 Dec; 73(6):766-772. PubMed ID: 27565143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Microbial Decontamination Using Non-thermal Low Pressure Argon Plasma Jet.
    Younis WO; Berekaa MM; Mohamed AH
    Pak J Biol Sci; 2020 Jan; 23(3):248-256. PubMed ID: 31944085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial mechanism and the effect of atmospheric pressure N
    Wang J; Yu Z; Xu Z; Hu S; Li Y; Xue X; Cai Q; Zhou X; Shen J; Lan Y; Cheng C
    Biofouling; 2018 Sep; 34(8):935-949. PubMed ID: 30477343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet.
    Yahaya AG; Okuyama T; Kristof J; Blajan MG; Shimizu K
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.
    Wende K; Williams P; Dalluge J; Gaens WV; Aboubakr H; Bischof J; von Woedtke T; Goyal SM; Weltmann KD; Bogaerts A; Masur K; Bruggeman PJ
    Biointerphases; 2015 Jun; 10(2):029518. PubMed ID: 25947392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metrology of Ar-N
    Ullah N; Khan MI; Qamar A; Rehman NU; Tag elDin E; Alkhedher M; Majid A
    ACS Omega; 2023 Apr; 8(13):12028-12038. PubMed ID: 37033817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures.
    Wiegand C; Beier O; Horn K; Pfuch A; Tölke T; Hipler UC; Schimanski A
    Skin Pharmacol Physiol; 2014; 27(1):25-35. PubMed ID: 23921169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets.
    Lackmann JW; Bandow JE
    Appl Microbiol Biotechnol; 2014; 98(14):6205-13. PubMed ID: 24841116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.
    Gorbanev Y; Soriano R; O'Connell D; Chechik V
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.
    Rehman MU; Jawaid P; Uchiyama H; Kondo T
    Arch Biochem Biophys; 2016 Sep; 605():19-25. PubMed ID: 27085689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold plasma inactivation of chronic wound bacteria.
    Mohd Nasir N; Lee BK; Yap SS; Thong KL; Yap SL
    Arch Biochem Biophys; 2016 Sep; 605():76-85. PubMed ID: 27046340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids.
    Xu Z; Cheng C; Shen J; Lan Y; Hu S; Han W; Chu PK
    Bioelectrochemistry; 2018 Jun; 121():125-134. PubMed ID: 29413862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Gas Temperature in Atmospheric Non-Equilibrium Plasma on Bactericidal Effect.
    Kawano H; Takamatsu T; Matsumura Y; Miyahara H; Iwasawa A; Okino A
    Biocontrol Sci; 2018; 23(4):167-175. PubMed ID: 30584203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization.
    Kaneko T; Sasaki S; Takashima K; Kanzaki M
    J Clin Biochem Nutr; 2017 Jan; 60(1):3-11. PubMed ID: 28163376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.
    Uchiyama H; Zhao QL; Hassan MA; Andocs G; Nojima N; Takeda K; Ishikawa K; Hori M; Kondo T
    PLoS One; 2015; 10(8):e0136956. PubMed ID: 26318000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach.
    Traba C; Liang JF
    Biofouling; 2015; 31(1):39-48. PubMed ID: 25569189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.
    Bartis EA; Luan P; Knoll AJ; Hart C; Seog J; Oehrlein GS
    Biointerphases; 2015 Jun; 10(2):029512. PubMed ID: 25930012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact pulse-modulation cold air plasma jet for the inactivation of chronic wound bacteria: development and characterization.
    Thana P; Wijaikhum A; Poramapijitwat P; Kuensaen C; Meerak J; Ngamjarurojana A; Sarapirom S; Boonyawan D
    Heliyon; 2019 Sep; 5(9):e02455. PubMed ID: 31687557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization.
    Brun P; Bernabè G; Marchiori C; Scarpa M; Zuin M; Cavazzana R; Zaniol B; Martines E
    J Appl Microbiol; 2018 Aug; 125(2):398-408. PubMed ID: 29655267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.