These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 29864584)
1. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Dvořák P; de Lorenzo V Metab Eng; 2018 Jul; 48():94-108. PubMed ID: 29864584 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42. Dvořák P; Kováč J; de Lorenzo V Microb Biotechnol; 2020 Jul; 13(4):1273-1283. PubMed ID: 32363744 [TBL] [Abstract][Full Text] [Related]
3. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876 [TBL] [Abstract][Full Text] [Related]
4. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Meijnen JP; de Winde JH; Ruijssenaars HJ Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685 [TBL] [Abstract][Full Text] [Related]
12. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
13. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related]
14. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937 [TBL] [Abstract][Full Text] [Related]
15. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910 [TBL] [Abstract][Full Text] [Related]
18. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Ling C; Peabody GL; Salvachúa D; Kim YM; Kneucker CM; Calvey CH; Monninger MA; Munoz NM; Poirier BC; Ramirez KJ; St John PC; Woodworth SP; Magnuson JK; Burnum-Johnson KE; Guss AM; Johnson CW; Beckham GT Nat Commun; 2022 Aug; 13(1):4925. PubMed ID: 35995792 [TBL] [Abstract][Full Text] [Related]
19. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Oh EJ; Ha SJ; Rin Kim S; Lee WH; Galazka JM; Cate JH; Jin YS Metab Eng; 2013 Jan; 15():226-34. PubMed ID: 23103205 [TBL] [Abstract][Full Text] [Related]
20. Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture. Hardy GP; Teixeira de Mattos MJ; Neijssel OM FEMS Microbiol Lett; 1993 Feb; 107(1):107-10. PubMed ID: 8385642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]