These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2986469)

  • 1. Potassium ion homeostasis and mitochondrial redox status of turtle brain during and after ischemia.
    Sick TJ; Chasnoff EP; Rosenthal M
    Am J Physiol; 1985 May; 248(5 Pt 2):R531-40. PubMed ID: 2986469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats.
    Sick TJ; Rosenthal M; LaManna JC; Lutz PL
    Am J Physiol; 1982 Sep; 243(3):R281-8. PubMed ID: 6287869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium ion homeostasis and mitochondrial redox activity in brain: relative changes as indicators of hypoxia.
    Milito SJ; Raffin CN; Rosenthal M; Sick TJ
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):155-62. PubMed ID: 3343290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral resistance to anoxia in the marine turtle.
    Lutz PL; LaManna JC; Adams MR; Rosenthal M
    Respir Physiol; 1980 Sep; 41(3):241-51. PubMed ID: 6256839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of evoked potentials with continued ion transport during anoxia in turtle brain.
    Feng ZC; Rosenthal M; Sick TJ
    Am J Physiol; 1988 Sep; 255(3 Pt 2):R478-84. PubMed ID: 3414843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensitivity of mitochondrial redox status and evoked potential recovery early during reperfusion in post-ischemic rat brain.
    Feng ZC; Sick TJ; Rosenthal M
    Resuscitation; 1998 Apr; 37(1):33-41. PubMed ID: 9667336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism, ion homeostasis, and evoked potentials in anoxic turtle brain.
    Chih CP; Feng ZC; Rosenthal M; Lutz PL; Sick TJ
    Am J Physiol; 1989 Oct; 257(4 Pt 2):R854-60. PubMed ID: 2802002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of glycolysis alters potassium ion transport and mitochondrial redox activity in rat brain.
    Raffin CN; Sick TJ; Rosenthal M
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):857-65. PubMed ID: 2848047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative brain oxygenation and mitochondrial redox activity in turtles and rats.
    Sick TJ; Lutz PL; LaManna JC; Rosenthal M
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1354-9. PubMed ID: 6295991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion leakage is reduced during anoxia in turtle brain: a potential survival strategy.
    Chih CP; Rosenthal M; Sick TJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):R1562-4. PubMed ID: 2604013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG suppression and anoxic depolarization: influences on cerebral oxygenation during ischemia.
    Raffin CN; Harrison M; Sick TJ; Rosenthal M
    J Cereb Blood Flow Metab; 1991 May; 11(3):407-15. PubMed ID: 1849909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between aerobic and anaerobic energy production in turtle brain in situ.
    Lutz PL; McMahon P; Rosenthal M; Sick TJ
    Am J Physiol; 1984 Oct; 247(4 Pt 2):R740-4. PubMed ID: 6093562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for adenosine in channel arrest in the anoxic turtle brain.
    Pék M; Lutz PL
    J Exp Biol; 1997 Jul; 200(Pt 13):1913-7. PubMed ID: 9232005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve.
    Eng DL; Kocsis JD
    J Neurophysiol; 1987 Mar; 57(3):740-54. PubMed ID: 3559699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine, a "retaliatory" metabolite, promotes anoxia tolerance in turtle brain.
    Pérez-Pinzón MA; Lutz PL; Sick TJ; Rosenthal M
    J Cereb Blood Flow Metab; 1993 Jul; 13(4):728-32. PubMed ID: 8314926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthodromic field potentials and recurrent inhibition during anoxia in turtle brain.
    Feng ZC; Sick TJ; Rosenthal M
    Am J Physiol; 1988 Sep; 255(3 Pt 2):R485-91. PubMed ID: 3414844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative metabolism during and following ischemia of cat spinal cord.
    Yamada S; Sanders DC; Maeda G
    Neurol Res; 1981; 3(1):1-16. PubMed ID: 6114453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPINEPHRINE OR GV-26 ELECTRICAL STIMULATION REDUCES INHALANT ANESTHESTIC RECOVERY TIME IN COMMON SNAPPING TURTLES (CHELYDRA SERPENTINA).
    Goe A; Shmalberg J; Gatson B; Bartolini P; Curtiss J; Wellehan JF
    J Zoo Wildl Med; 2016 Jun; 47(2):501-7. PubMed ID: 27468022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of muscle contraction on cytochrome a,a3 redox state.
    Duhaylongsod FG; Griebel JA; Bacon DS; Wolfe WG; Piantadosi CA
    J Appl Physiol (1985); 1993 Aug; 75(2):790-7. PubMed ID: 8226483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.