These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29864805)

  • 1. Self-contained in-vacuum in situ thin film stress measurement tool.
    Reinink J; van de Kruijs RWE; Bijkerk F
    Rev Sci Instrum; 2018 May; 89(5):053904. PubMed ID: 29864805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth.
    Colin JJ; Diot Y; Guerin P; Lamongie B; Berneau F; Michel A; Jaouen C; Abadias G
    Rev Sci Instrum; 2016 Feb; 87(2):023902. PubMed ID: 26931861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cantilever stress measurements for pulsed laser deposition of perovskite oxides at 1000 K in an oxygen partial pressure of 10(-4) millibars.
    Premper J; Sander D; Kirschner J
    Rev Sci Instrum; 2015 Mar; 86(3):033902. PubMed ID: 25832240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for high resolution curvature measurement applied to stress monitoring in thin films.
    Grachev S; Hérault Q; Wang J; Balestrieri M; Montigaud H; Lazzari R; Gozhyk I
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 35016161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-flexible modular high vacuum setup for thin film deposition.
    Götsch T; Wernig EM; Klötzer B; Schachinger T; Kunze-Liebhäuser J; Penner S
    Rev Sci Instrum; 2019 Feb; 90(2):023902. PubMed ID: 30831745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy.
    Lai YW; Hamann S; Ehmann M; Ludwig A
    Rev Sci Instrum; 2011 Jun; 82(6):063903. PubMed ID: 21721705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mo-La
    Menzel SB; Seifert M; Priyadarshi A; Rane GK; Park E; Oswald S; Gemming T
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual-deposition setup for fabricating nanoparticle-thin film hybrid structures.
    Kala S; Mehta BR; Kruis FE
    Rev Sci Instrum; 2008 Jan; 79(1):013902. PubMed ID: 18248045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-vacuum organic molecular-beam deposition system for in situ growth and characterization.
    Annese E; Dos Santos JE; Rodrigues GLMP; Rocha AS; de Moraes HR; Cezar JC
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1658-1663. PubMed ID: 30407175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams.
    Kim HJ; Han JH; Kaiser R; Oh KH; Vlassak JJ
    Rev Sci Instrum; 2008 Apr; 79(4):045112. PubMed ID: 18447557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.
    Hsieh PY; Lee CY; Tai NH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-vacuum deposition system for in situ and real-time electrical characterization of organic thin-film transistors.
    Quiroga SD; Shehu A; Albonetti C; Murgia M; Stoliar P; Borgatti F; Biscarini F
    Rev Sci Instrum; 2011 Feb; 82(2):025110. PubMed ID: 21361636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design freedom in multilayer thin-film devices.
    Ellinger CR; Nelson SF
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4675-84. PubMed ID: 25705845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new laser heating system for thin film growth by chemical vapor deposition.
    Fujimoto E; Sumiya M; Ohnishi T; Lippmaa M; Takeguchi M; Koinuma H; Matsumoto Y
    Rev Sci Instrum; 2012 Sep; 83(9):094701. PubMed ID: 23020398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ study of the hydriding kinetics of Pd thin films.
    Delmelle R; Proost J
    Phys Chem Chem Phys; 2011 Jun; 13(23):11412-21. PubMed ID: 21566834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate.
    Jin Z; Shin S; Kwon DH; Han SJ; Min YS
    Nanoscale; 2014 Nov; 6(23):14453-8. PubMed ID: 25340905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 100 nm thick InGaN/GaN multiple quantum-well column-crystallized thin film deposited on Si(111) substrate and its micromachining.
    Hu FR; Kanamori Y; Ochi K; Zhao Y; Wakui M; Hane K
    Nanotechnology; 2008 Jan; 19(3):035305. PubMed ID: 21817568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV optical properties of thin film oxide layers deposited by different processes.
    Pellicori SF; Martinez CL
    Appl Opt; 2011 Oct; 50(28):5559-66. PubMed ID: 22016226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial preparation and characterization of thin-film multilayer electro-optical devices.
    Neuber C; Bäte M; Thelakkat M; Schmidt HW; Hänsel H; Zettl H; Krausch G
    Rev Sci Instrum; 2007 Jul; 78(7):072216. PubMed ID: 17672747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ stress evolution during and after sputter deposition of Al thin films.
    Pletea M; Koch R; Wendrock H; Kaltofen R; Schmidt OG
    J Phys Condens Matter; 2009 Jun; 21(22):225008. PubMed ID: 21715772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.