These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 29865061)

  • 21. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases.
    Morris G; Berk M; Carvalho AF; Maes M; Walker AJ; Puri BK
    Behav Brain Res; 2018 Apr; 341():154-175. PubMed ID: 29289598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferroptosis: A potential therapeutic target for neurodegenerative diseases.
    Vitalakumar D; Sharma A; Flora SJS
    J Biochem Mol Toxicol; 2021 Aug; 35(8):e22830. PubMed ID: 34047408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The metal theory of Alzheimer's disease.
    Bush AI
    J Alzheimers Dis; 2013; 33 Suppl 1():S277-81. PubMed ID: 22635102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer's Disease.
    Onukwufor JO; Dirksen RT; Wojtovich AP
    Antioxidants (Basel); 2022 Mar; 11(4):. PubMed ID: 35453377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new model for the pathophysiology of Alzheimer's disease. Aluminium toxicity is exacerbated by hydrogen peroxide and attenuated by an amyloid protein fragment and melatonin.
    van Rensburg SJ; Daniels WM; Potocnik FC; van Zyl JM; Taljaard JJ; Emsley RA
    S Afr Med J; 1997 Sep; 87(9):1111-5. PubMed ID: 9358827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer's Disease: Current Evidence and Future Avenues.
    He DL; Fan YG; Wang ZY
    Curr Neuropharmacol; 2023; 21(1):67-86. PubMed ID: 35980072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease.
    Sun 孙意冉 Y; Yan C; He L; Xiang S; Wang P; Li Z; Chen Y; Zhao J; Yuan Y; Wang W; Zhang X; Su P; Su Y; Ma J; Xu J; Peng Q; Ma H; Xie Z; Zhang Z
    Ageing Res Rev; 2023 Jun; 87():101899. PubMed ID: 36871781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease.
    Castellani RJ; Honda K; Zhu X; Cash AD; Nunomura A; Perry G; Smith MA
    Ageing Res Rev; 2004 Jul; 3(3):319-26. PubMed ID: 15231239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metallostasis in Alzheimer's disease.
    Ayton S; Lei P; Bush AI
    Free Radic Biol Med; 2013 Sep; 62():76-89. PubMed ID: 23142767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases.
    Maher P
    Free Radic Biol Med; 2018 Feb; 115():92-104. PubMed ID: 29170091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD.
    Zhang Y; Wang M; Chang W
    Front Pharmacol; 2022; 13():983623. PubMed ID: 36188557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics.
    Di Domenico F; Barone E; Perluigi M; Butterfield DA
    Antioxid Redox Signal; 2017 Mar; 26(8):364-387. PubMed ID: 27626216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach.
    Calabrese V; Scapagnini G; Colombrita C; Ravagna A; Pennisi G; Giuffrida Stella AM; Galli F; Butterfield DA
    Amino Acids; 2003 Dec; 25(3-4):437-44. PubMed ID: 14661103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.
    Smith MA; Nunomura A; Zhu X; Takeda A; Perry G
    Antioxid Redox Signal; 2000; 2(3):413-20. PubMed ID: 11229355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spotlight on Ferroptosis: Iron-Dependent Cell Death in Alzheimer's Disease.
    Ashraf A; So PW
    Front Aging Neurosci; 2020; 12():196. PubMed ID: 32760266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment.
    Smith MA; Zhu X; Tabaton M; Liu G; McKeel DW; Cohen ML; Wang X; Siedlak SL; Dwyer BE; Hayashi T; Nakamura M; Nunomura A; Perry G
    J Alzheimers Dis; 2010; 19(1):363-72. PubMed ID: 20061651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease.
    Reddy PH
    J Neurochem; 2006 Jan; 96(1):1-13. PubMed ID: 16305625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of Ferroptosis and Emerging Links to the Pathology of Neurodegenerative Diseases.
    Sun Y; Xia X; Basnet D; Zheng JC; Huang J; Liu J
    Front Aging Neurosci; 2022; 14():904152. PubMed ID: 35837484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ongoing search for small molecules to study metal-associated amyloid-β species in Alzheimer's disease.
    Savelieff MG; DeToma AS; Derrick JS; Lim MH
    Acc Chem Res; 2014 Aug; 47(8):2475-82. PubMed ID: 25080056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.