These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29865289)

  • 1. Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate.
    Gonzalez Viejo C; Fuentes S; Torrico DD; Dunshea FR
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions.
    Wei B; He X; Zhang C; Wu X
    Biomed Eng Online; 2017 Jan; 16(1):17. PubMed ID: 28249595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-contact robust heart rate estimation using HSV color model and matrix-based IIR filter in the face video imaging.
    Dongrae Cho ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3847-3850. PubMed ID: 28269125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach to improve contactless heart rate monitoring using a webcam.
    Monkaresi H; Calvo RA; Yan H
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1153-60. PubMed ID: 25014930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Contact Heart Rate Monitoring Using Lab Color Space.
    Rahman H; Ahmed MU; Begum S
    Stud Health Technol Inform; 2016; 224():46-53. PubMed ID: 27225552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Contact Physiological Parameters Extraction Using Facial Video Considering Illumination, Motion, Movement and Vibration.
    Rahman H; Ahmed MU; Begum S
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):88-98. PubMed ID: 31095471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a Machine Learning-Based Digital Twin for Non-Invasive Human Bio-Signal Fusion.
    Al-Zyoud I; Laamarti F; Ma X; Tobón D; El Saddik A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional and deep learning methods in heart rate estimation from RGB face videos.
    Helwan A; Azar D; Ma'aitah MKS
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38081130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the effect of color spaces and color formats on heart rate measurement using the imaging photoplethysmography (IPPG) method.
    Zhang C; Tian J; Li D; Hou X; Wang L
    Technol Health Care; 2022; 30(S1):391-402. PubMed ID: 35124614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Biosensory Computer Application to Assess Physiological and Emotional Responses from Sensory Panelists.
    Fuentes S; Gonzalez Viejo C; Torrico DD; Dunshea FR
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements in remote cardiopulmonary measurement using a five band digital camera.
    McDuff D; Gontarek S; Picard RW
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2593-601. PubMed ID: 24835124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone-based photoplethysmographic imaging for heart rate monitoring.
    Alafeef M
    J Med Eng Technol; 2017 Jul; 41(5):387-395. PubMed ID: 28300460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative continuous non-invasive cuffless blood pressure monitoring based on photoplethysmography technology.
    Ruiz-Rodríguez JC; Ruiz-Sanmartín A; Ribas V; Caballero J; García-Roche A; Riera J; Nuvials X; de Nadal M; de Sola-Morales O; Serra J; Rello J
    Intensive Care Med; 2013 Sep; 39(9):1618-25. PubMed ID: 23740275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Contact Heart Rate Monitoring in Neonatal Intensive Care Unit using RGB Camera.
    Chen Q; Jiang X; Liu X; Lu C; Wang L; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5822-5825. PubMed ID: 33019298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
    Baek HJ; Kim KK; Kim JS; Lee B; Park KS
    Physiol Meas; 2010 Feb; 31(2):145-57. PubMed ID: 20009186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.