These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2986552)

  • 1. Molybdate and the 1,25-dihydroxyvitamin D3 receptor from chick intestine.
    Nakada M; Simpson RU; DeLuca HF
    Arch Biochem Biophys; 1985 May; 238(2):517-21. PubMed ID: 2986552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular distribution of DNA-binding and non-DNA-binding 1,25-dihydroxyvitamin D receptors in chicken intestine.
    Nakada M; Simpson RU; DeLuca HF
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6711-3. PubMed ID: 6093115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of dye-ligand interaction with the polynucleotide binding domain of 1,25-dihydroxyvitamin D3-receptor complexes of chicken intestinal cytosol.
    Mellon WS
    Mol Pharmacol; 1984 Jan; 25(1):86-91. PubMed ID: 6323954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of rat liver glucocorticoid receptor by molybdate. Effects on both non-activated and activated receptor complexes.
    Murakami N; Moudgil VK
    Biochem J; 1981 Sep; 198(3):447-55. PubMed ID: 6275847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the rat liver cytosol glucocorticoid receptor by sephacryl S-300 filtration in the presence and absence of molybdate. Physical properties of the receptor and evidence for an activation inhibitor.
    Distelhorst CW; Benutto BM
    J Biol Chem; 1985 Feb; 260(4):2153-9. PubMed ID: 3972784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory action of aurintricarboxylic acid and rifamycin AF/013 at the polynucleotide domain of 1,25-dihydroxyvitamin D3-receptor complexes.
    Mellon WS
    Biochem Pharmacol; 1984 Apr; 33(7):1047-57. PubMed ID: 6324811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-induced activation of 1,25-dihydroxyvitamin D3 receptors to a DNA binding form.
    Hirst M; Feldman D
    J Biol Chem; 1987 May; 262(15):7072-5. PubMed ID: 3034879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of molybdate on the hydrodynamic and DNA-binding properties of the non-activated and activated forms of the androgen receptor in calf uterus.
    de Boer W; Bolt J; Brinkmann AO; Mulder E
    Biochim Biophys Acta; 1986 Nov; 889(2):240-50. PubMed ID: 3778950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the mechanism of action of 1 alpha, 24-dihydroxyvitamin D3. II. Specific binding of alpha, 24-dihydroxyvitamin D3 to chick intestinal receptor.
    Ishizuka S; Bannai K; Naruchi T; Hashimoto Y
    Steroids; 1981 Jan; 37(1):33-43. PubMed ID: 6261424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the 1 alpha,25-dihydroxyvitamin D3 receptor with RNA and synthetic polyribonucleotides.
    Franceschi RT
    Proc Natl Acad Sci U S A; 1984 Apr; 81(8):2337-41. PubMed ID: 6201853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exchange assay for quantitating 1,25-dihydroxyvitamin D3 receptors.
    Radparvar S; Mellon WS
    J Steroid Biochem; 1984 Apr; 20(4A):807-15. PubMed ID: 6323879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between 1,25-dihydroxyvitamin D3 receptors and intestinal nuclei. Binding to nuclear constituents in vitro.
    Pike JW
    J Biol Chem; 1982 Jun; 257(12):6766-75. PubMed ID: 6282824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a photolabile derivative of 1,25-dihydroxyvitamin D3 as a photoaffinity probe for 1,25-dihydroxyvitamin-D3 receptor in chick intestinal cytosol.
    Ray R; Rose S; Holick SA; Holick MF
    Biochem Biophys Res Commun; 1985 Oct; 132(1):198-203. PubMed ID: 2998355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization of 1,25-dihydroxyvitamin D3 receptor with pyridoxal 5'-phosphate from hen intestinal mucosa.
    Kanda A; Ikeda S; Shimura F; Hosoya N
    J Steroid Biochem; 1986 Sep; 25(3):333-41. PubMed ID: 3022072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of human androgen receptors to the deoxyribonucleic acid-binding state.
    Kovacs WJ; Griffin JE; Wilson JD
    Endocrinology; 1983 Nov; 113(5):1574-81. PubMed ID: 6628317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdate effect on the glucocorticoid receptor in cell-free systems and intact lymphocytes.
    NĂ¡ray A
    Biochim Biophys Acta; 1983 Apr; 756(3):328-34. PubMed ID: 6830858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion from 4S androgen receptor from rat submandibular gland to higher molecular form and the effect of sodium molybdate.
    Ohara-Nemoto Y; Nemoto T; Ota M
    J Steroid Biochem; 1985 Nov; 23(5A):643-9. PubMed ID: 4079380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent inactivation of nucleic acid binding and aggregation of the 1,25-dihydroxyvitamin D3 receptor.
    Franceschi RT; De Luca HF; Mercado DL
    Arch Biochem Biophys; 1983 Apr; 222(2):504-17. PubMed ID: 6189453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sodium molybdate on the androgen receptor from the R3327 prostatic tumor.
    Rowley DR; Chang CH; Tindall DJ
    Endocrinology; 1984 May; 114(5):1776-83. PubMed ID: 6714164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralocorticosteroid receptor of the chick intestine. Oligomeric structure and transformation.
    Rafestin-Oblin ME; Couette B; Radanyi C; Lombes M; Baulieu EE
    J Biol Chem; 1989 Jun; 264(16):9304-9. PubMed ID: 2542305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.