BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29865577)

  • 1. Functional osteology of the avian wrist and the evolution of flapping flight.
    Vazquez RJ
    J Morphol; 1992 Mar; 211(3):259-268. PubMed ID: 29865577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.
    Baier DB; Gatesy SM; Dial KP
    PLoS One; 2013; 8(5):e63982. PubMed ID: 23691132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contractile properties of the M. supracoracoideus In the pigeon and starling: a case for long-axis rotation of the humerus.
    Poore SO; Ashcroft A; Sánchez-Haiman A; Goslow GE
    J Exp Biol; 1997 Dec; 200 (Pt 23)():2987-3002. PubMed ID: 9359888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the avian acrocoracohumeral ligament and its role in shoulder stabilization in flight.
    Baier DB
    J Exp Zool A Ecol Genet Physiol; 2012 Feb; 317(2):83-95. PubMed ID: 22105988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional kinematics of hummingbird flight.
    Tobalske BW; Warrick DR; Clark CJ; Powers DR; Hedrick TL; Hyder GA; Biewener AA
    J Exp Biol; 2007 Jul; 210(Pt 13):2368-82. PubMed ID: 17575042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional anatomy of the shoulder in the European starling (Sturnus vulgaris).
    Dial KP; Goslow GE; Jenkins FA
    J Morphol; 1991 Mar; 207(3):327-344. PubMed ID: 29865507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal flight dynamics II. Longitudinal stability in flapping flight.
    Taylor GK; Thomas AL
    J Theor Biol; 2002 Feb; 214(3):351-70. PubMed ID: 11846595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early evolution of avian flight and perching: new evidence from the lower cretaceous of china.
    Sereno PC; Chenggang R
    Science; 1992 Feb; 255(5046):845-8. PubMed ID: 17756432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost.
    Sapir N; Dudley R
    J Exp Biol; 2012 Oct; 215(Pt 20):3603-11. PubMed ID: 23014570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi.
    Longrich NR; Vinther J; Meng Q; Li Q; Russell AP
    Curr Biol; 2012 Dec; 22(23):2262-7. PubMed ID: 23177480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. REPTILIAN PHYSIOLOGY AND THE FLIGHT CAPACITY OF ARCHAEOPTERYX.
    Ruben J
    Evolution; 1991 Feb; 45(1):1-17. PubMed ID: 28564073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics and physiology of gait selection in flying birds.
    Tobalske BW
    Physiol Biochem Zool; 2000; 73(6):736-50. PubMed ID: 11121347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.