These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 29866051)
1. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. Garnica M; Bacaicoa E; Mora V; San Francisco S; Baigorri R; Zamarreño AM; Garcia-Mina JM BMC Plant Biol; 2018 Jun; 18(1):105. PubMed ID: 29866051 [TBL] [Abstract][Full Text] [Related]
2. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants. Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Kabir AH; Paltridge NG; Roessner U; Stangoulis JC Physiol Plant; 2013 Mar; 147(3):381-95. PubMed ID: 22913816 [TBL] [Abstract][Full Text] [Related]
4. Auxin: a major player in the shoot-to-root regulation of root Fe-stress physiological responses to Fe deficiency in cucumber plants. Bacaicoa E; Mora V; Zamarreño AM; Fuentes M; Casanova E; García-Mina JM Plant Physiol Biochem; 2011 May; 49(5):545-56. PubMed ID: 21411331 [TBL] [Abstract][Full Text] [Related]
5. Root exudation of phytosiderophores from soil-grown wheat. Oburger E; Gruber B; Schindlegger Y; Schenkeveld WDC; Hann S; Kraemer SM; Wenzel WW; Puschenreiter M New Phytol; 2014 Sep; 203(4):1161-1174. PubMed ID: 24890330 [TBL] [Abstract][Full Text] [Related]
6. Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. Wu T; Zhang HT; Wang Y; Jia WS; Xu XF; Zhang XZ; Han ZH J Exp Bot; 2012 Jan; 63(2):859-70. PubMed ID: 22058407 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.). Beasley JT; Bonneau JP; Johnson AAT PLoS One; 2017; 12(5):e0177061. PubMed ID: 28475636 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867 [TBL] [Abstract][Full Text] [Related]
9. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. Jin CW; Du ST; Shamsi IH; Luo BF; Lin XY J Exp Bot; 2011 Jul; 62(11):3875-84. PubMed ID: 21511908 [TBL] [Abstract][Full Text] [Related]
10. Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. Tolay I; Erenoglu B; Römheld V; Braun HJ; Cakmak I J Exp Bot; 2001 May; 52(358):1093-9. PubMed ID: 11432925 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158 [TBL] [Abstract][Full Text] [Related]
12. Activation of a gene network in durum wheat roots exposed to cadmium. Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.). Khadka VS; Vaughn K; Xie J; Swaminathan P; Ma Q; Cramer GR; Fennell AY BMC Plant Biol; 2019 Feb; 19(1):72. PubMed ID: 30760212 [TBL] [Abstract][Full Text] [Related]
14. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Xu Y; Zhang S; Guo H; Wang S; Xu L; Li C; Qian Q; Chen F; Geisler M; Qi Y; Jiang de A Plant J; 2014 Jul; 79(1):106-17. PubMed ID: 24798203 [TBL] [Abstract][Full Text] [Related]
15. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756 [TBL] [Abstract][Full Text] [Related]
16. Uninhibited biosynthesis and release of phytosiderophores in the presence of heavy metal (HM) favors HM remediation. Gupta CK; Singh B Environ Sci Pollut Res Int; 2017 Apr; 24(10):9407-9416. PubMed ID: 28233213 [TBL] [Abstract][Full Text] [Related]
17. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare). Yousfi S; Rabhi M; Abdelly C; Gharsalli M C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315 [TBL] [Abstract][Full Text] [Related]
18. Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity. Daneshbakhsh B; Khoshgoftarmanesh AH; Shariatmadari H; Cakmak I J Plant Physiol; 2013 Jan; 170(1):41-6. PubMed ID: 23122914 [TBL] [Abstract][Full Text] [Related]
19. Real-time [11C]methionine translocation in barley in relation to mugineic acid phytosiderophore biosynthesis. Bughio N; Nakanishi H; Kiyomiya S; Matsuhashi S; Ishioka NS; Watanabe S; Uchida H; Tsuji A; Osa A; Kume T; Hashimoto S; Sekine T; Mori S Planta; 2001 Sep; 213(5):708-15. PubMed ID: 11678274 [TBL] [Abstract][Full Text] [Related]
20. Zinc deficiency-induced phytosiderophore release by the Triticaceae is not consistently expressed in solution culture. Pedler JF; Parker DR; Crowley DE Planta; 2000 Jun; 211(1):120-6. PubMed ID: 10923712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]