BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29866771)

  • 1. Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway.
    Huang C; Fisher KP; Hammer SS; Navitskaya S; Blanchard GJ; Busik JV
    Diabetes; 2018 Aug; 67(8):1639-1649. PubMed ID: 29866771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy.
    Cheng Y; Du Y; Liu H; Tang J; Veenstra A; Kern TS
    Diabetes; 2018 Feb; 67(2):291-298. PubMed ID: 29167189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Vesicle-Induced Classical Complement Activation Leads to Retinal Endothelial Cell Damage via MAC Deposition.
    Huang C; Fisher KP; Hammer SS; Busik JV
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy.
    Kim D; Mecham RP; Nguyen NH; Roy S
    Exp Eye Res; 2019 Jul; 184():221-226. PubMed ID: 31022398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in
    Beli E; Yan Y; Moldovan L; Vieira CP; Gao R; Duan Y; Prasad R; Bhatwadekar A; White FA; Townsend SD; Chan L; Ryan CN; Morton D; Moldovan EG; Chu FI; Oudit GY; Derendorf H; Adorini L; Wang XX; Evans-Molina C; Mirmira RG; Boulton ME; Yoder MC; Li Q; Levi M; Busik JV; Grant MB
    Diabetes; 2018 Sep; 67(9):1867-1879. PubMed ID: 29712667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy.
    Liu H; Lessieur EM; Saadane A; Lindstrom SI; Taylor PR; Kern TS
    Diabetologia; 2019 Dec; 62(12):2365-2374. PubMed ID: 31612267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the role of Müller cells-derived exosomes in diabetic retinopathy.
    Gad MS; Elsherbiny NM; El-Bassouny DR; Omar NM; Mahmoud SM; Al-Shabrawey M; Tawfik A
    Microvasc Res; 2024 Jul; 154():104695. PubMed ID: 38723843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirt1: A Guardian of the Development of Diabetic Retinopathy.
    Mishra M; Duraisamy AJ; Kowluru RA
    Diabetes; 2018 Apr; 67(4):745-754. PubMed ID: 29311218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAT3 activation in circulating myeloid-derived cells contributes to retinal microvascular dysfunction in diabetes.
    Chen M; Obasanmi G; Armstrong D; Lavery NJ; Kissenpfennig A; Lois N; Xu H
    J Neuroinflammation; 2019 Jul; 16(1):138. PubMed ID: 31286987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes.
    Lee VK; Hosking BM; Holeniewska J; Kubala EC; Lundh von Leithner P; Gardner PJ; Foxton RH; Shima DT
    Diabetologia; 2018 Nov; 61(11):2422-2432. PubMed ID: 30094465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the kallikrein-kinin system as a new therapeutic approach to diabetic retinopathy.
    Pruneau D; Bélichard P; Sahel JA; Combal JP
    Curr Opin Investig Drugs; 2010 May; 11(5):507-14. PubMed ID: 20419596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis.
    Duan J; Du C; Shi Y; Liu D; Ma J
    Int J Biochem Cell Biol; 2018 Jan; 94():61-70. PubMed ID: 29203232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy.
    Lu QY; Chen W; Lu L; Zheng Z; Xu X
    Int J Clin Exp Pathol; 2014; 7(10):7268-77. PubMed ID: 25400825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic eNOS-knockout mice develop accelerated retinopathy.
    Li Q; Verma A; Han PY; Nakagawa T; Johnson RJ; Grant MB; Campbell-Thompson M; Jarajapu YP; Lei B; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5240-6. PubMed ID: 20435587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy.
    Gurel Z; Sieg KM; Shallow KD; Sorenson CM; Sheibani N
    Mol Vis; 2013; 19():1047-59. PubMed ID: 23734074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2
    Araújo RS; Silva MS; Santos DF; Silva GA
    Exp Eye Res; 2020 May; 194():108027. PubMed ID: 32259534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenofibrate Ameliorates Oxidative Stress-Induced Retinal Microvascular Dysfunction in Diabetic Rats.
    Li J; Wang P; Chen Z; Yu S; Xu H
    Curr Eye Res; 2018 Nov; 43(11):1395-1403. PubMed ID: 30024319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clinical implications of recent studies on the structure and function of the retinal microvasculature in diabetes.
    Cheung CY; Ikram MK; Klein R; Wong TY
    Diabetologia; 2015 May; 58(5):871-85. PubMed ID: 25669631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells.
    Lin M; Chen Y; Jin J; Hu Y; Zhou KK; Zhu M; Le YZ; Ge J; Johnson RS; Ma JX
    Diabetologia; 2011 Jun; 54(6):1554-66. PubMed ID: 21360191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survivin contributes to the progression of diabetic retinopathy through HIF-1α pathway.
    Liu N; Zhao N; Chen L; Cai N
    Int J Clin Exp Pathol; 2015; 8(8):9161-7. PubMed ID: 26464661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.