These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 29867139)

  • 1. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells.
    Riesenberg S; Maricic T
    Nat Commun; 2018 Jun; 9(1):2164. PubMed ID: 29867139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecules enhance CRISPR genome editing in pluripotent stem cells.
    Yu C; Liu Y; Ma T; Liu K; Xu S; Zhang Y; Liu H; La Russa M; Xie M; Ding S; Qi LS
    Cell Stem Cell; 2015 Feb; 16(2):142-7. PubMed ID: 25658371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells.
    Ma X; Chen X; Jin Y; Ge W; Wang W; Kong L; Ji J; Guo X; Huang J; Feng XH; Fu J; Zhu S
    Nat Commun; 2018 Apr; 9(1):1303. PubMed ID: 29610531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression.
    Li XL; Li GH; Fu J; Fu YW; Zhang L; Chen W; Arakaki C; Zhang JP; Wen W; Zhao M; Chen WV; Botimer GD; Baylink D; Aranda L; Choi H; Bechar R; Talbot P; Sun CK; Cheng T; Zhang XB
    Nucleic Acids Res; 2018 Nov; 46(19):10195-10215. PubMed ID: 30239926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing.
    Denes CE; Cole AJ; Aksoy YA; Li G; Neely GG; Hesselson D
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise and efficient scarless genome editing in stem cells using CORRECT.
    Kwart D; Paquet D; Teo S; Tessier-Lavigne M
    Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of Genome-edited Human Pluripotent Stem Cell Lines: From Targeting to Isolation.
    Blair JD; Bateup HS; Hockemeyer DF
    J Vis Exp; 2016 Feb; (108):e53583. PubMed ID: 26863600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
    Chen X; Janssen JM; Liu J; Maggio I; 't Jong AEJ; Mikkers HMM; Gonçalves MAFV
    Nat Commun; 2017 Sep; 8(1):657. PubMed ID: 28939824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient generation of isogenic pluripotent stem cell models using prime editing.
    Li H; Busquets O; Verma Y; Syed KM; Kutnowski N; Pangilinan GR; Gilbert LA; Bateup HS; Rio DC; Hockemeyer D; Soldner F
    Elife; 2022 Sep; 11():. PubMed ID: 36069759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases.
    Merkert S; Martin U
    Adv Biochem Eng Biotechnol; 2018; 163():169-186. PubMed ID: 29124278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Derivation of Multi-Reporter Pluripotent Stem Cell Lines via CRISPR/Cas9n-Mediated Homology-Directed Repair.
    Dettmer R; Naujok O
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e116. PubMed ID: 32628328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing in Human Pluripotent Stem Cells.
    Carlson-Stevermer J; Saha K
    Methods Mol Biol; 2017; 1590():165-174. PubMed ID: 28353269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.