These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29867152)

  • 1. A rapid response magnitude scale for timely assessment of the high frequency seismic radiation.
    Picozzi M; Bindi D; Spallarossa D; Di Giacomo D; Zollo A
    Sci Rep; 2018 Jun; 8(1):8562. PubMed ID: 29867152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clock advance and magnitude limitation through fault interaction: the case of the 2016 central Italy earthquake sequence.
    Pino NA; Convertito V; Madariaga R
    Sci Rep; 2019 Mar; 9(1):5005. PubMed ID: 30899081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume unbalance on the 2016 Amatrice - Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism.
    Bignami C; Valerio E; Carminati E; Doglioni C; Tizzani P; Lanari R
    Sci Rep; 2019 Mar; 9(1):4250. PubMed ID: 30862941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures.
    Page RA; Joyner WB; Blume JA
    Science; 1975 Aug; 189(4203):601-8. PubMed ID: 17838741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy).
    Barberio MD; Barbieri M; Billi A; Doglioni C; Petitta M
    Sci Rep; 2017 Sep; 7(1):11735. PubMed ID: 28916778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earthquake forecasting during the complex Amatrice-Norcia seismic sequence.
    Marzocchi W; Taroni M; Falcone G
    Sci Adv; 2017 Sep; 3(9):e1701239. PubMed ID: 28924610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global variations of large megathrust earthquake rupture characteristics.
    Ye L; Kanamori H; Lay T
    Sci Adv; 2018 Mar; 4(3):eaao4915. PubMed ID: 29750186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes.
    Gomberg J; Reasenberg PA; Bodin P; Harris RA
    Nature; 2001 May; 411(6836):462-6. PubMed ID: 11373675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-similarity of low-frequency earthquakes.
    Supino M; Poiata N; Festa G; Vilotte JP; Satriano C; Obara K
    Sci Rep; 2020 Apr; 10(1):6523. PubMed ID: 32300164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On catching the preparatory phase of damaging earthquakes: an example from central Italy.
    Picozzi M; Iaccarino AG; Spallarossa D; Bindi D
    Sci Rep; 2023 Sep; 13(1):14403. PubMed ID: 37658128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earthquake source parameters in Zagros region (Iran) from the time-evolutive P-wave displacement.
    Nazeri S; Abdi F; Ismail A; Rahimi H; Zollo A
    Sci Rep; 2023 Oct; 13(1):17964. PubMed ID: 37864064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake.
    Nimiya H; Ikeda T; Tsuji T
    Sci Adv; 2017 Nov; 3(11):e1700813. PubMed ID: 29202026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scaling law for slow earthquakes.
    Ide S; Beroza GC; Shelly DR; Uchide T
    Nature; 2007 May; 447(7140):76-9. PubMed ID: 17476265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting long-lasting transients of earthquake activity on a fault system by monitoring apparent stress, ground motion and clustering.
    Picozzi M; Bindi D; Zollo A; Festa G; Spallarossa D
    Sci Rep; 2019 Nov; 9(1):16268. PubMed ID: 31700092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What controls the remobilization and deformation of surficial sediment by seismic shaking? Linking lacustrine slope stratigraphy to great earthquakes in South-Central Chile.
    Molenaar A; Van Daele M; Vandorpe T; Degenhart G; De Batist M; Urrutia R; Pino M; Strasser M; Moernaut J
    Sedimentology; 2021 Oct; 68(6):2365-2396. PubMed ID: 34690376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Mobile Signaling Data in Determining the Seismic Influence Field: A Case Study of the 2017 Mw 6.5 Jiuzhaigou Earthquake, China.
    Guo X; Wei B; Nie G; Su G
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seismogenic Potential of the Main Himalayan Thrust Constrained by Coupling Segmentation and Earthquake Scaling.
    Michel S; Jolivet R; Rollins C; Jara J; Dal Zilio L
    Geophys Res Lett; 2021 Jul; 48(13):e2021GL093106. PubMed ID: 35860496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks.
    Improta L; Latorre D; Margheriti L; Nardi A; Marchetti A; Lombardi AM; Castello B; Villani F; Ciaccio MG; Mele FM; Moretti M;
    Sci Rep; 2019 May; 9(1):6921. PubMed ID: 31061514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution and uncertainties in estimates of earthquake stress drop and energy release.
    Abercrombie RE
    Philos Trans A Math Phys Eng Sci; 2021 May; 379(2196):20200131. PubMed ID: 33715406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical physics models for aftershocks and induced seismicity.
    Luginbuhl M; Rundle JB; Turcotte DL
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 377(2136):. PubMed ID: 30478209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.