These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29867194)
1. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. El Akkari M; Réchauchère O; Bispo A; Gabrielle B; Makowski D Sci Rep; 2018 Jun; 8(1):8563. PubMed ID: 29867194 [TBL] [Abstract][Full Text] [Related]
2. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
3. Climate change mitigation in British Columbia's forest sector: GHG reductions, costs, and environmental impacts. Smyth CE; Xu Z; Lemprière TC; Kurz WA Carbon Balance Manag; 2020 Oct; 15(1):21. PubMed ID: 33001303 [TBL] [Abstract][Full Text] [Related]
4. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458 [TBL] [Abstract][Full Text] [Related]
5. Benefit analysis of multi-approach biomass energy utilization toward carbon neutrality. Wang J; Fu J; Zhao Z; Bing L; Xi F; Wang F; Dong J; Wang S; Lin G; Yin Y; Hu Q Innovation (Camb); 2023 May; 4(3):100423. PubMed ID: 37181230 [TBL] [Abstract][Full Text] [Related]
6. A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Dugan AJ; Birdsey R; Mascorro VS; Magnan M; Smyth CE; Olguin M; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):13. PubMed ID: 30182168 [TBL] [Abstract][Full Text] [Related]
7. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Kang Y; Yang Q; Bartocci P; Wei H; Liu SS; Wu Z; Zhou H; Yang H; Fantozzi F; Chen H Renew Sustain Energy Rev; 2020 Jul; 127():109842. PubMed ID: 34234613 [TBL] [Abstract][Full Text] [Related]
8. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Smyth CE; Smiley BP; Magnan M; Birdsey R; Dugan AJ; Olguin M; Mascorro VS; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):11. PubMed ID: 30187146 [TBL] [Abstract][Full Text] [Related]
9. Land-use and alternative bioenergy pathways for waste biomass. Campbell JE; Block E Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033 [TBL] [Abstract][Full Text] [Related]
10. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
11. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
12. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. Pujol Pereira EI; Suddick EC; Six J PLoS One; 2016; 11(3):e0150837. PubMed ID: 26963623 [TBL] [Abstract][Full Text] [Related]
13. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Khanna M; Crago CL; Black M Interface Focus; 2011 Apr; 1(2):233-47. PubMed ID: 22482030 [TBL] [Abstract][Full Text] [Related]
14. The climate impacts of bioenergy systems depend on market and regulatory policy contexts. Lemoine DM; Plevin RJ; Cohn AS; Jones AD; Brandt AR; Vergara SE; Kammen DM Environ Sci Technol; 2010 Oct; 44(19):7347-50. PubMed ID: 20873876 [TBL] [Abstract][Full Text] [Related]
16. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Tonini D; Hamelin L; Alvarado-Morales M; Astrup TF Bioresour Technol; 2016 May; 208():123-133. PubMed ID: 26938807 [TBL] [Abstract][Full Text] [Related]
17. Sustainable bioenergy contributes to cost-effective climate change mitigation in China. Xu Y; Smith P; Qin Z iScience; 2024 Jul; 27(7):110232. PubMed ID: 39021785 [TBL] [Abstract][Full Text] [Related]
18. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe. Bright RM; Strømman AH Environ Sci Technol; 2010 Apr; 44(7):2261-9. PubMed ID: 20163088 [TBL] [Abstract][Full Text] [Related]
19. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Field JL; Richard TL; Smithwick EAH; Cai H; Laser MS; LeBauer DS; Long SP; Paustian K; Qin Z; Sheehan JJ; Smith P; Wang MQ; Lynd LR Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21968-21977. PubMed ID: 32839342 [TBL] [Abstract][Full Text] [Related]
20. How can land-use modelling tools inform bioenergy policies? Davis SC; House JI; Diaz-Chavez RA; Molnar A; Valin H; Delucia EH Interface Focus; 2011 Apr; 1(2):212-23. PubMed ID: 22482028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]