These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29867871)

  • 81. Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments.
    Kieft TL; Murphy EM; Haldeman DL; Amy PS; Bjornstad BN; McDonald EV; Ringelberg DB; White DC; Stair J; Griffiths RP; Gsell TC; Holben WE; Boone DR
    Microb Ecol; 1998 Nov; 36(3):336-348. PubMed ID: 9852513
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Linkage of Microbial Parameters with Sediment Physicochemical Properties in Subsurface Fluvial Sediment Deposits of the Mahi River Basin, Western India.
    Shah AP; Farooqui S; Maurya DM; Sharma A; Archana G
    Indian J Microbiol; 2022 Jun; 62(2):257-265. PubMed ID: 35462711
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evidence for organic synthesis in high temperature aqueous media--facts and prognosis.
    Simoneit BR
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):119-40. PubMed ID: 11536666
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Microbial Processing of Jellyfish Detritus in the Ocean.
    Tinta T; Zhao Z; Escobar A; Klun K; Bayer B; Amano C; Bamonti L; Herndl GJ
    Front Microbiol; 2020; 11():590995. PubMed ID: 33193256
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effects of Field Simulated Marine Heatwaves on Sedimentary Organic Matter Quantity, Biochemical Composition, and Degradation Rates.
    Soru S; Stipcich P; Ceccherelli G; Ennas C; Moccia D; Pusceddu A
    Biology (Basel); 2022 May; 11(6):. PubMed ID: 35741362
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Organic Matter Composition at Ocean Station Papa Affects Its Bioavailability, Bacterioplankton Growth Efficiency and the Responding Taxa.
    Stephens BM; Opalk K; Petras D; Liu S; Comstock J; Aluwihare LI; Hansell DA; Carlson CA
    Front Mar Sci; 2021 May; 2021():. PubMed ID: 35004707
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Formation of ethane and propane via abiotic reductive conversion of acetic acid in hydrothermal sediments.
    Song M; Schubotz F; Kellermann MY; Hansen CT; Bach W; Teske AP; Hinrichs KU
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782456
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A method for the analysis of acetate turnover in a coastal marine sediment.
    Ansbaek J; Blackburn TH
    Microb Ecol; 1980 Dec; 5(4):253-64. PubMed ID: 24232513
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids.
    Trembath-Reichert E; Shah Walter SR; Ortiz MAF; Carter PD; Girguis PR; Huber JA
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33910898
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Observations of barophilic microbial activity in samples of sediment and intercepted particulates from the demerara abyssal plain.
    Deming JW; Colwell RR
    Appl Environ Microbiol; 1985 Oct; 50(4):1002-6. PubMed ID: 16346897
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Power limits for microbial life.
    LaRowe DE; Amend JP
    Front Microbiol; 2015; 6():718. PubMed ID: 26236299
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Editorial: Hydrothermal microbial ecosystems.
    Teske A; Reysenbach AL
    Front Microbiol; 2015; 6():884. PubMed ID: 26388842
    [No Abstract]   [Full Text] [Related]  

  • 93. Glucose uptake and end product formation in an intertidal marine sediment.
    Sawyer TE; King GM
    Appl Environ Microbiol; 1993 Jan; 59(1):120-8. PubMed ID: 16348837
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma.
    Beloin RM; Sinclair JL; Ghiorse WC
    Microb Ecol; 1988 Jul; 16(1):85-97. PubMed ID: 24201535
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community.
    Novitsky JA
    Appl Environ Microbiol; 1987 Oct; 53(10):2368-72. PubMed ID: 16347457
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments.
    Balkwill DL; Leach FR; Wilson JT; McNabb JF; White DC
    Microb Ecol; 1988 Jul; 16(1):73-84. PubMed ID: 24201534
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Degradation of dead microbial biomass in a marine sediment.
    Novitsky JA
    Appl Environ Microbiol; 1986 Sep; 52(3):504-9. PubMed ID: 16347148
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Method for Assessing Heterogeneity in Turnover Rates within Microbial Communities.
    Laws EA; Jones D; Karl DM
    Appl Environ Microbiol; 1986 Oct; 52(4):866-74. PubMed ID: 16347178
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Kinetic Analysis of Protein Degradation by a Freshwater Wetland Sediment Community.
    Cunningham HW; Wetzel RG
    Appl Environ Microbiol; 1989 Aug; 55(8):1963-1967. PubMed ID: 16347988
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Correction for Zhou et al., "Genome- and Community-Level Interaction Insights into Carbon Utilization and Element Cycling Functions of
    Zhou Z; Liu Y; Xu W; Pan J; Luo ZH; Li M
    mSystems; 2022 Oct; 7(5):e0075022. PubMed ID: 35993865
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.