These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29868268)

  • 1. Modeling transcriptional activation changes to Gal4 variants via structure-based computational mutagenesis.
    Masso M; Rao N; Pyarasani P
    PeerJ; 2018; 6():e4844. PubMed ID: 29868268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate and efficient structure-based computational mutagenesis for modeling fluorescence levels of Aequorea victoria green fluorescent protein mutants.
    Masso M
    Protein Eng Des Sel; 2020 Sep; 33():. PubMed ID: 32930801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling functional changes to Escherichia coli thymidylate synthase upon single residue replacements: a structure-based approach.
    Masso M
    PeerJ; 2015; 3():e721. PubMed ID: 25648456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fitness of unregulated human Ras mutants modeled by implementing computational mutagenesis and machine learning techniques.
    Masso M; Bansal A; Prem P; Gajjala A; Vaisman II
    Heliyon; 2019 Jun; 5(6):e01884. PubMed ID: 31211262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional domains of the yeast regulatory protein GAL4.
    Johnston SA; Zavortink MJ; Debouck C; Hopper JE
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6553-7. PubMed ID: 2944111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-based computational mutagenesis for predicting the disease potential of human non-synonymous single nucleotide polymorphisms.
    Masso M; Vaisman II
    J Theor Biol; 2010 Oct; 266(4):560-8. PubMed ID: 20655929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants.
    Kobayashi I; Kojima K; Uchino K; Sezutsu H; Iizuka T; Tatematsu K; Yonemura N; Tanaka H; Yamakawa M; Ogura E; Kamachi Y; Tamura T
    Arch Insect Biochem Physiol; 2011 Apr; 76(4):195-210. PubMed ID: 21254202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain.
    Hidalgo P; Ansari AZ; Schmidt P; Hare B; Simkovich N; Farrell S; Shin EJ; Ptashne M; Wagner G
    Genes Dev; 2001 Apr; 15(8):1007-20. PubMed ID: 11316794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4.
    Swaffield JC; Bromberg JF; Johnston SA
    Nature; 1992 Jun; 357(6380):698-700. PubMed ID: 1614516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast.
    Stafford GA; Morse RH
    Mol Cell Biol; 2001 Jul; 21(14):4568-78. PubMed ID: 11416135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the interferon-sensitivity determining region of hepatitis C virus and transcriptional activity of the nonstructural region 5A protein.
    Fukuma T; Enomoto N; Marumo F; Sato C
    Hepatology; 1998 Oct; 28(4):1147-53. PubMed ID: 9755255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based prediction of protein activity changes: assessing the impact of single residue replacements.
    Masso M; Vaisman II
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3221-4. PubMed ID: 22255025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No strict alignment is required between a transcriptional activator binding site and the "TATA box" of a yeast gene.
    Ruden DM; Ma J; Ptashne M
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4262-6. PubMed ID: 3132708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the functional consequences of single residue replacements in bacteriophage f1 gene V protein.
    Masso M; Mathe E; Parvez N; Hijazi K; Vaisman II
    Protein Eng Des Sel; 2009 Nov; 22(11):665-71. PubMed ID: 19690089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. Isolation and characterization of the regulatory gene GAL4.
    Hashimoto H; Kikuchi Y; Nogi Y; Fukasawa T
    Mol Gen Genet; 1983; 191(1):31-8. PubMed ID: 6350827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator.
    Mylin LM; Bhat JP; Hopper JE
    Genes Dev; 1989 Aug; 3(8):1157-65. PubMed ID: 2676720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.
    Lefevre JF; Dayie KT; Peng JW; Wagner G
    Biochemistry; 1996 Feb; 35(8):2674-86. PubMed ID: 8611573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression.
    Griggs DW; Johnston M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8597-601. PubMed ID: 1924319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.