These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 29868501)
1. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501 [TBL] [Abstract][Full Text] [Related]
2. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. Gong S; Lei L; Chang X; Belland R; Zhong G Microbiology (Reading); 2011 Apr; 157(Pt 4):1134-1144. PubMed ID: 21233161 [TBL] [Abstract][Full Text] [Related]
3. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA mBio; 2021 Jan; 12(1):. PubMed ID: 33468693 [No Abstract] [Full Text] [Related]
4. Chlamydia trachomatis T3SS Effector CT622 Induces Proinflammatory Cytokines Through TLR2/TLR4-Mediated MAPK/NF-κB Pathways in THP-1 Cells. Lei W; Wen Y; Yang Y; Liu S; Li Z J Infect Dis; 2024 Jun; 229(6):1637-1647. PubMed ID: 38147361 [TBL] [Abstract][Full Text] [Related]
5. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells. Pereira IS; da Cunha M; Leal IP; Luís MP; Gonçalves P; Gonçalves C; Mota LJ Med Microbiol Immunol; 2024 Jul; 213(1):15. PubMed ID: 39008129 [TBL] [Abstract][Full Text] [Related]
6. Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis. McCaslin PN; Andersen SE; Icardi CM; Faris R; Steiert B; Smith P; Haider J; Weber MM Infect Immun; 2023 Jul; 91(7):e0049122. PubMed ID: 37347192 [TBL] [Abstract][Full Text] [Related]
7. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009 [No Abstract] [Full Text] [Related]
8. The Bishop RC; Derré I Infect Immun; 2022 Jun; 90(6):e0019022. PubMed ID: 35587198 [TBL] [Abstract][Full Text] [Related]
9. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
10. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Weber MM; Bauler LD; Lam J; Hackstadt T Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906 [TBL] [Abstract][Full Text] [Related]
11. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
12. Expression and targeting of secreted proteins from Chlamydia trachomatis. Bauler LD; Hackstadt T J Bacteriol; 2014 Apr; 196(7):1325-34. PubMed ID: 24443531 [TBL] [Abstract][Full Text] [Related]
13. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523 [TBL] [Abstract][Full Text] [Related]
14. Chlamydia trachomatis and its interaction with the cellular retromer. Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514 [TBL] [Abstract][Full Text] [Related]
15. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758 [TBL] [Abstract][Full Text] [Related]
16. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related]
17. The Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079 [No Abstract] [Full Text] [Related]
18. Host and Bacterial Glycolysis during Ende RJ; Derré I Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818 [TBL] [Abstract][Full Text] [Related]
19. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host-pathogen interactions. Yang C; Kari L; Sturdevant GL; Song L; Patton MJ; Couch CE; Ilgenfritz JM; Southern TR; Whitmire WM; Briones M; Bonner C; Grant C; Hu P; McClarty G; Caldwell HD Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28369275 [TBL] [Abstract][Full Text] [Related]
20. The Hamaoui D; Cossé MM; Mohan J; Lystad AH; Wollert T; Subtil A Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26784-26794. PubMed ID: 33055216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]