BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29868554)

  • 1. Hydrolysis of Hemicellulose and Derivatives-A Review of Recent Advances in the Production of Furfural.
    Delbecq F; Wang Y; Muralidhara A; El Ouardi K; Marlair G; Len C
    Front Chem; 2018; 6():146. PubMed ID: 29868554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in the Microwave-Assisted Production of Hydroxymethylfurfural by Hydrolysis of Cellulose Derivatives-A Review.
    Delbecq F; Len C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30087293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemistry and oleochemistry: a green combination for the production of high-value small chemicals.
    Len C; Duhan V; Ouyang W; Nguyen R; Lochab B
    Front Chem; 2023; 11():1306182. PubMed ID: 38090349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents.
    Zhang X; Zhu P; Li Q; Xia H
    Front Chem; 2022; 10():911674. PubMed ID: 35615315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Furfural production using ionic liquids: A review.
    Peleteiro S; Rivas S; Alonso JL; Santos V; Parajó JC
    Bioresour Technol; 2016 Feb; 202():181-91. PubMed ID: 26708486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends.
    Cousin E; Namhaed K; Pérès Y; Cognet P; Delmas M; Hermansyah H; Gozan M; Alaba PA; Aroua MK
    Sci Total Environ; 2022 Nov; 847():157599. PubMed ID: 35901885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in direct production of furfural from lignocellulosic residues and hemicellulose.
    Zhang T; Li W; Xiao H; Jin Y; Wu S
    Bioresour Technol; 2022 Jun; 354():127126. PubMed ID: 35398210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.
    Liu L; Chang HM; Jameel H; Park S
    Bioresour Technol; 2018 Mar; 252():165-171. PubMed ID: 29324276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.
    Wu K; Wu Y; Chen Y; Chen H; Wang J; Yang M
    ChemSusChem; 2016 Jun; 9(12):1355-85. PubMed ID: 27158985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of solid acid and solvent pretreatment for co-production of furfural, xylooligosaccharide and reducing sugars from Phyllostachys edulis.
    Yang Q; Fan B; He YC
    Bioresour Technol; 2024 Mar; 395():130398. PubMed ID: 38286168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.
    Zhang L; He Y; Zhu Y; Liu Y; Wang X
    Bioresour Technol; 2018 Feb; 249():536-541. PubMed ID: 29080517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid.
    Deshan ADK; Atanda L; Moghaddam L; Rackemann DW; Beltramini J; Doherty WOS
    Front Chem; 2020; 8():659. PubMed ID: 32850671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone-Water-Sodium Chloride System.
    Zha J; Fan B; He J; He YC; Ma C
    Appl Biochem Biotechnol; 2022 May; 194(5):2021-2035. PubMed ID: 35015216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.
    Sahu R; Dhepe PL
    ChemSusChem; 2012 Apr; 5(4):751-61. PubMed ID: 22411884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid.
    Nie Y; Hou Q; Li W; Bai C; Bai X; Ju M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review on Metal Catalysts for the Production of Cyclopentanone Derivatives from Furfural and HMF.
    Duan Y; Cheng Y; Hu Z; Wang C; Sui D; Yang Y; Lu T
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids.
    Zhang Z; Song J; Han B
    Chem Rev; 2017 May; 117(10):6834-6880. PubMed ID: 28535680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Catalytic Upgrading of Biofuranic Aldehydes to Alcohols.
    Long J; Xu Y; Zhao W; Li H; Yang S
    Front Chem; 2019; 7():529. PubMed ID: 31403043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved one-pot synthesis of furfural from corn stalk with heterogeneous catalysis using corn stalk as biobased carrier in deep eutectic solvent-water system.
    Ji L; Tang Z; Yang D; Ma C; He YC
    Bioresour Technol; 2021 Nov; 340():125691. PubMed ID: 34358983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.