These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29868570)

  • 1. Foot Placement Modulation Diminishes for Perturbations Near Foot Contact.
    Vlutters M; Van Asseldonk EHF; van der Kooij H
    Front Bioeng Biotechnol; 2018; 6():48. PubMed ID: 29868570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of anteroposterior perturbations on the control of the center of mass during treadmill walking.
    van den Bogaart M; Bruijn SM; van Dieën JH; Meyns P
    J Biomech; 2020 Apr; 103():109660. PubMed ID: 32171496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trip recovery strategies following perturbations of variable duration.
    Shirota C; Simon AM; Kuiken TA
    J Biomech; 2014 Aug; 47(11):2679-84. PubMed ID: 24894024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower extremity joint-level responses to pelvis perturbation during human walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    Sci Rep; 2018 Oct; 8(1):14621. PubMed ID: 30279499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait.
    van Mierlo M; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2021 Sep; 126():110637. PubMed ID: 34325123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do kinematic metrics of walking balance adapt to perturbed optical flow?
    Thompson JD; Franz JR
    Hum Mov Sci; 2017 Aug; 54():34-40. PubMed ID: 28371662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane.
    Matjačić Z; Zadravec M; Olenšek A
    Appl Bionics Biomech; 2019; 2019():1046459. PubMed ID: 31281413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-prioritization and balance recovery strategies used by young healthy adults during dual-task walking.
    Small GH; Neptune RR
    Gait Posture; 2022 Jun; 95():115-120. PubMed ID: 35472735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking whole-body angular momentum and step placement during perturbed human walking.
    Leestma JK; Golyski PR; Smith CR; Sawicki GS; Young AJ
    J Exp Biol; 2023 Mar; 226(6):. PubMed ID: 36752161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paretic versus non-paretic stepping responses following pelvis perturbations in walking chronic-stage stroke survivors.
    Haarman JAM; Vlutters M; Olde Keizer RACM; van Asseldonk EHF; Buurke JH; Reenalda J; Rietman JS; van der Kooij H
    J Neuroeng Rehabil; 2017 Oct; 14(1):106. PubMed ID: 29029646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizability of foot-placement control strategies during unperturbed and perturbed gait.
    Liu C; Valero-Cuevas FJ; Finley JM
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from perturbations during paced walking.
    Oddsson LI; Wall C; McPartland MD; Krebs DE; Tucker CA
    Gait Posture; 2004 Feb; 19(1):24-34. PubMed ID: 14741301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.