These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 29868581)

  • 1. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance.
    Champroux A; Cocquet J; Henry-Berger J; Drevet JR; Kocer A
    Front Cell Dev Biol; 2018; 6():50. PubMed ID: 29868581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development.
    Ashapkin V; Suvorov A; Pilsner JR; Krawetz SA; Sergeyev O
    Hum Reprod Update; 2023 Jan; 29(1):24-44. PubMed ID: 36066418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction.
    Pepin AS; Lafleur C; Lambrot R; Dumeaux V; Kimmins S
    Mol Metab; 2022 May; 59():101463. PubMed ID: 35183795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development.
    Lismer A; Kimmins S
    Nat Commun; 2023 Apr; 14(1):2142. PubMed ID: 37059740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health.
    Schagdarsurengin U; Steger K
    Nat Rev Urol; 2016 Oct; 13(10):584-95. PubMed ID: 27578043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo.
    Castillo J; Jodar M; Oliva R
    Hum Reprod Update; 2018 Sep; 24(5):535-555. PubMed ID: 29800303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation.
    Ly L; Chan D; Aarabi M; Landry M; Behan NA; MacFarlane AJ; Trasler J
    Mol Hum Reprod; 2017 Jul; 23(7):461-477. PubMed ID: 28535307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not just heads and tails: The complexity of the sperm epigenome.
    Gold HB; Jung YH; Corces VG
    J Biol Chem; 2018 Sep; 293(36):13815-13820. PubMed ID: 29507096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health.
    Xavier MJ; Roman SD; Aitken RJ; Nixon B
    Hum Reprod Update; 2019 Sep; 25(5):518-540. PubMed ID: 31374565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization.
    Le Blévec E; Muroňová J; Ray PF; Arnoult C
    Mol Cell Endocrinol; 2020 Dec; 518():110964. PubMed ID: 32738444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin alterations during the epididymal maturation of mouse sperm refine the paternally inherited epigenome.
    Bedi YS; Roach AN; Thomas KN; Mehta NA; Golding MC
    Epigenetics Chromatin; 2022 Jan; 15(1):2. PubMed ID: 34991687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance.
    Lismer A; Siklenka K; Lafleur C; Dumeaux V; Kimmins S
    Nucleic Acids Res; 2020 Nov; 48(20):11380-11393. PubMed ID: 33068438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms.
    Wu D; Zhang K; Guan K; Khan FA; Pandupuspitasari NS; Negara W; Sun F; Huang C
    Arch Toxicol; 2024 Jun; 98(6):1685-1703. PubMed ID: 38460001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Impact on Male (In)Fertility via Epigenetic Route.
    Cescon M; Chianese R; Tavares RS
    J Clin Med; 2020 Aug; 9(8):. PubMed ID: 32764255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance.
    Cheuquemán C; Maldonado R
    Biol Res; 2021 Dec; 54(1):41. PubMed ID: 34930477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental origins of transgenerational sperm histone retention following ancestral exposures.
    Ben Maamar M; Beck D; Nilsson E; McCarrey JR; Skinner MK
    Dev Biol; 2020 Sep; 465(1):31-45. PubMed ID: 32628935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of semen to early embryo development: fertilization and beyond.
    Vallet-Buisan M; Mecca R; Jones C; Coward K; Yeste M
    Hum Reprod Update; 2023 Jul; 29(4):395-433. PubMed ID: 36882116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic Transgenerational Inheritance.
    Blanco Rodríguez J; Camprubí Sánchez C
    Adv Exp Med Biol; 2019; 1166():57-74. PubMed ID: 31301046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profiling of histone writers/erasers enzymes across spermatogenesis, mature sperm and pre-cleavage embryo: Implications in paternal epigenome transitions and inheritance mechanisms.
    Barbero G; de Sousa Serro MG; Perez Lujan C; Vitullo AD; González CR; González B
    Front Cell Dev Biol; 2023; 11():1086573. PubMed ID: 36776561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.