These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29868653)

  • 1. Surface tension driven aggregation of organic nanowires via lab in a droplet.
    Gu J; Yin B; Fu S; Feng M; Zhang Z; Dong H; Gao F; Zhao YS
    Nanoscale; 2018 Jun; 10(23):11006-11012. PubMed ID: 29868653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale controllable patterning growth of aligned organic nanowires through evaporation-induced self-assembly.
    Bao R; Zhang C; Wang Z; Zhang X; Ou X; Lee CS; Jie J; Zhang X
    Chemistry; 2012 Jan; 18(3):975-80. PubMed ID: 22170498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregate nanostructures of organic molecular materials.
    Liu H; Xu J; Li Y; Li Y
    Acc Chem Res; 2010 Dec; 43(12):1496-508. PubMed ID: 20942417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.
    Bao RR; Zhang CY; Zhang XJ; Ou XM; Lee CS; Jie JS; Zhang XH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5757-62. PubMed ID: 23742204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties.
    Yan Y; Zhao YS
    Chem Soc Rev; 2014 Jul; 43(13):4325-40. PubMed ID: 24695580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a Liquid Droplet.
    Seong B; Park HS; Chae I; Lee H; Wang X; Jang HS; Jung J; Lee C; Lin L; Byun D
    Langmuir; 2017 Apr; 33(14):3367-3372. PubMed ID: 28287742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable growth of one-dimensional chiral nanostructures from an achiral molecule.
    Zuo Z; Liu H; Yin X; Zheng H; Li Y
    J Colloid Interface Sci; 2009 Jan; 329(2):390-4. PubMed ID: 18945442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screw dislocation driven growth of nanomaterials.
    Meng F; Morin SA; Forticaux A; Jin S
    Acc Chem Res; 2013 Jul; 46(7):1616-26. PubMed ID: 23738750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet surface.
    Numata M; Takigami Y; Hirose N; Sakai R
    Org Biomol Chem; 2014 Mar; 12(10):1627-32. PubMed ID: 24473347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering.
    Li Q; Jin W; Chu M; Zhang W; Gu J; Shahid B; Chen A; Yu Y; Qiao S; Zhao YS
    Nanoscale; 2018 Mar; 10(10):4680-4685. PubMed ID: 29485650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional tailorable patterning by solvent-assisted surface-tension-driven lithography.
    Toro RG; Caschera D; Palamà IE; D'Amone S; Biasiucci M; Federici F; Gigli G; Cortese B
    J Colloid Interface Sci; 2015 May; 446():44-52. PubMed ID: 25656558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of low dimensional nanostructures and materials via supramolecular interactions at interfaces.
    Zhou C; Li Y
    J Colloid Interface Sci; 2013 May; 397():45-64. PubMed ID: 23481516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface organic monolayers control the hygroscopic growth of submicrometer particles at high relative humidity.
    Ruehl CR; Wilson KR
    J Phys Chem A; 2014 Jun; 118(22):3952-66. PubMed ID: 24866291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic Alignment and Assembly of π-Conjugated Oligopeptides Using Colloidal Microchannels.
    Li B; Valverde LR; Zhang F; Zhou Y; Li S; Diao Y; Wilson WL; Schroeder CM
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41586-41593. PubMed ID: 29112374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional crystalline and homogeneous metallic nanostructures using directed assembly of nanoparticles.
    Yilmaz C; Cetin AE; Goutzamanidis G; Huang J; Somu S; Altug H; Wei D; Busnaina A
    ACS Nano; 2014 May; 8(5):4547-58. PubMed ID: 24738844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.