These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29868820)

  • 1. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures.
    Suphavilai C; Chia S; Sharma A; Tu L; Da Silva RP; Mongia A; DasGupta R; Nagarajan N
    Genome Med; 2021 Dec; 13(1):189. PubMed ID: 34915921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting anti-cancer drug response by finding optimal subset of drugs.
    Yassaee Meybodi F; Eslahchi C
    Bioinformatics; 2021 Dec; 37(23):4509-4516. PubMed ID: 34170297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GDSCTools for mining pharmacogenomic interactions in cancer.
    Cokelaer T; Chen E; Iorio F; Menden MP; Lightfoot H; Saez-Rodriguez J; Garnett MJ
    Bioinformatics; 2018 Apr; 34(7):1226-1228. PubMed ID: 29186349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization.
    Emdadi A; Eslahchi C
    Front Genet; 2020; 11():75. PubMed ID: 32174963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernelized rank learning for personalized drug recommendation.
    He X; Folkman L; Borgwardt K
    Bioinformatics; 2018 Aug; 34(16):2808-2816. PubMed ID: 29528376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PharmacoGx: an R package for analysis of large pharmacogenomic datasets.
    Smirnov P; Safikhani Z; El-Hachem N; Wang D; She A; Olsen C; Freeman M; Selby H; Gendoo DM; Grossmann P; Beck AH; Aerts HJ; Lupien M; Goldenberg A; Haibe-Kains B
    Bioinformatics; 2016 Apr; 32(8):1244-6. PubMed ID: 26656004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics.
    Sharifi-Noghabi H; Peng S; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i380-i388. PubMed ID: 32657371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipartite graph-based approach for clustering of cell lines by gene expression-drug response associations.
    Chi C; Ye Y; Chen B; Huang H
    Bioinformatics; 2021 Sep; 37(17):2617-2626. PubMed ID: 33682877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for drug response prediction in cancer cell lines via network representation learning.
    Yang J; Li A; Li Y; Guo X; Wang M
    Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel heterogeneous network-based method for drug response prediction in cancer cell lines.
    Zhang F; Wang M; Xi J; Yang J; Li A
    Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.