These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29868820)

  • 21. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
    Gönen M; Margolin AA
    Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction.
    Su R; Liu X; Xiao G; Wei L
    Brief Bioinform; 2020 May; 21(3):996-1005. PubMed ID: 30868164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning with multiple pairwise kernels for drug bioactivity prediction.
    Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J
    Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predict drug sensitivity of cancer cells with pathway activity inference.
    Wang X; Sun Z; Zimmermann MT; Bugrim A; Kocher JP
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):15. PubMed ID: 30704449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RWEN: response-weighted elastic net for prediction of chemosensitivity of cancer cell lines.
    Basu A; Mitra R; Liu H; Schreiber SL; Clemons PA
    Bioinformatics; 2018 Oct; 34(19):3332-3339. PubMed ID: 29688307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DTF: Deep Tensor Factorization for predicting anticancer drug synergy.
    Sun Z; Huang S; Jiang P; Hu P
    Bioinformatics; 2020 Aug; 36(16):4483-4489. PubMed ID: 32369563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PANCDR: precise medicine prediction using an adversarial network for cancer drug response.
    Kim J; Park SH; Lee H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38487849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors.
    Mourragui S; Loog M; van de Wiel MA; Reinders MJT; Wessels LFA
    Bioinformatics; 2019 Jul; 35(14):i510-i519. PubMed ID: 31510654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge.
    Sundin I; Peltola T; Micallef L; Afrabandpey H; Soare M; Mamun Majumder M; Daee P; He C; Serim B; Havulinna A; Heckman C; Jacucci G; Marttinen P; Kaski S
    Bioinformatics; 2018 Jul; 34(13):i395-i403. PubMed ID: 29949984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of transfer learning for cancer drug sensitivity prediction.
    Dhruba SR; Rahman R; Matlock K; Ghosh S; Pal R
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):497. PubMed ID: 30591023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication.
    Xi J; Yuan X; Wang M; Li A; Li X; Huang Q
    Bioinformatics; 2020 Mar; 36(6):1855-1863. PubMed ID: 31626284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying heterogeneity of expression data based on principal components.
    Yang Z; Michailidis G
    Bioinformatics; 2019 Feb; 35(4):553-559. PubMed ID: 30060088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.
    Huang C; Mezencev R; McDonald JF; Vannberg F
    PLoS One; 2017; 12(10):e0186906. PubMed ID: 29073279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SUBSTRA: Supervised Bayesian Patient Stratification.
    Khakabimamaghani S; Kelkar YD; Grande BM; Morin RD; Ester M; Ziemek D
    Bioinformatics; 2019 Sep; 35(18):3263-3272. PubMed ID: 30768166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CGV: Cancer Genome Viewer, a web service for integrative cancer genome and pharmacogenomic data analysis.
    Choi JH; Choi HS; Cho SH; Lee JH; Woo HG
    Bioinformatics; 2022 Nov; 38(22):5116-5118. PubMed ID: 36130060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.