These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29868846)

  • 1. Latent variable modeling for the microbiome.
    Sankaran K; Holmes SP
    Biostatistics; 2019 Oct; 20(4):599-614. PubMed ID: 29868846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A latent allocation model for the analysis of microbial composition and disease.
    Abe K; Hirayama M; Ohno K; Shimamura T
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):519. PubMed ID: 30598099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis.
    Tang ZZ; Chen G
    Biostatistics; 2019 Oct; 20(4):698-713. PubMed ID: 29939212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised learning for medical data: A review of probabilistic factorization methods.
    Neijzen D; Lunter G
    Stat Med; 2023 Dec; 42(30):5541-5554. PubMed ID: 37850249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization.
    Zhou F; He K; Li Q; Chapkin RS; Ni Y
    Biostatistics; 2022 Jul; 23(3):891-909. PubMed ID: 33634824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data.
    Wadsworth WD; Argiento R; Guindani M; Galloway-Pena J; Shelburne SA; Vannucci M
    BMC Bioinformatics; 2017 Feb; 18(1):94. PubMed ID: 28178947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIRICHLET-TREE MULTINOMIAL MIXTURES FOR CLUSTERING MICROBIOME COMPOSITIONS.
    Mao J; Ma LI
    Ann Appl Stat; 2022 Sep; 16(3):1476-1499. PubMed ID: 36127929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A joint modeling framework of responses and response times to assess learning outcomes.
    Wang S; Zhang S; Shen Y
    Multivariate Behav Res; 2020; 55(1):49-68. PubMed ID: 31165632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized feature selection based semi-supervised latent Dirichlet allocation for microbiome analysis.
    Pais N; Ravishanker N; Rajasekaran S; Weinstock G; Tran DB
    Sci Rep; 2024 Apr; 14(1):8855. PubMed ID: 38632488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.
    Dethlefsen L; Relman DA
    Proc Natl Acad Sci U S A; 2011 Mar; 108 Suppl 1(Suppl 1):4554-61. PubMed ID: 20847294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies.
    Xu L; Paterson AD; Xu W
    Genet Epidemiol; 2017 Apr; 41(3):221-232. PubMed ID: 28111783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiome subcommunity learning with logistic-tree normal latent Dirichlet allocation.
    LeBlanc P; Ma L
    Biometrics; 2023 Sep; 79(3):2321-2332. PubMed ID: 36222326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Zero-Inflated Latent Dirichlet Allocation Model for Microbiome Studies.
    Deek RA; Li H
    Front Genet; 2020; 11():602594. PubMed ID: 33552122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phylogenetic transform enhances analysis of compositional microbiota data.
    Silverman JD; Washburne AD; Mukherjee S; David LA
    Elife; 2017 Feb; 6():. PubMed ID: 28198697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stratification of the Gut Microbiota Composition Landscape across the Alzheimer's Disease Continuum in a Turkish Cohort.
    Yıldırım S; Nalbantoğlu ÖU; Bayraktar A; Ercan FB; Gündoğdu A; Velioğlu HA; Göl MF; Soylu AE; Koç F; Gülpınar EA; Kadak KS; Arıkan M; Mardinoğlu A; Koçak M; Köseoğlu E; Hanoğlu L
    mSystems; 2022 Feb; 7(1):e0000422. PubMed ID: 35133187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptive independence test for microbiome community data.
    Song Y; Zhao H; Wang T
    Biometrics; 2020 Jun; 76(2):414-426. PubMed ID: 31538660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut microbiome diversity, variability, and latent community types compared with shifts in body weight during the freshman year of college in dormitory-housed adolescents.
    Mohr AE; Ahern MM; Sears DD; Bruening M; Whisner CM
    Gut Microbes; 2023 Dec; 15(2):2250482. PubMed ID: 37642346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for paired-multinomial data and its application to analysis of data on a taxonomic tree.
    Shi P; Li H
    Biometrics; 2017 Dec; 73(4):1266-1278. PubMed ID: 28369713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A zero-inflated non-negative matrix factorization for the deconvolution of mixed signals of biological data.
    Kong Y; Kozik A; Nakatsu CH; Jones-Hall YL; Chun H
    Int J Biostat; 2021 Mar; 18(1):203-218. PubMed ID: 33783171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal gut microbial relationships in the gut microbiome of wild baboons.
    Roche KE; Bjork JR; Dasari MR; Grieneisen L; Jansen D; Gould TJ; Gesquiere LR; Barreiro LB; Alberts SC; Blekhman R; Gilbert JA; Tung J; Mukherjee S; Archie EA
    Elife; 2023 May; 12():. PubMed ID: 37158607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.