These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29868948)

  • 1. Encapsulation of Active Enzymes within Bacteriophage P22 Virus-Like Particles.
    Patterson DP
    Methods Mol Biol; 2018; 1798():11-24. PubMed ID: 29868948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials.
    Wang Y; Douglas T
    Acc Chem Res; 2022 May; 55(10):1349-1359. PubMed ID: 35507643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry Controlled, Genetic Presentation of Bioactive Proteins on the P22 Virus-like Particle Using an External Decoration Protein.
    Schwarz B; Madden P; Avera J; Gordon B; Larson K; Miettinen HM; Uchida M; LaFrance B; Basu G; Rynda-Apple A; Douglas T
    ACS Nano; 2015 Sep; 9(9):9134-47. PubMed ID: 26266824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22.
    Patterson DP; Prevelige PE; Douglas T
    ACS Nano; 2012 Jun; 6(6):5000-9. PubMed ID: 22624576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors.
    P Patterson D; Hjorth C; Hernandez Irias A; Hewagama N; Bird J
    ACS Synth Biol; 2022 Sep; 11(9):2956-2968. PubMed ID: 36073831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriophage P22 Capsid as a Pluripotent Nanotechnology Tool.
    Essus VA; Souza Júnior GSE; Nunes GHP; Oliveira JDS; de Faria BM; Romão LF; Cortines JR
    Viruses; 2023 Feb; 15(2):. PubMed ID: 36851730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Packaging of Protein Cargo Inside of Virus-Like Particle P22.
    McCoy K; Douglas T
    Methods Mol Biol; 2018; 1776():295-302. PubMed ID: 29869250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid.
    O'Neil A; Prevelige PE; Basu G; Douglas T
    Biomacromolecules; 2012 Dec; 13(12):3902-7. PubMed ID: 23121071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein.
    Shen L; Bao N; Prevelige PE; Gupta A
    J Am Chem Soc; 2010 Dec; 132(49):17354-7. PubMed ID: 21090711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors.
    Esquirol L; McNeale D; Douglas T; Vickers CE; Sainsbury F
    ACS Synth Biol; 2022 Aug; 11(8):2709-2718. PubMed ID: 35880829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cross-Linked 2-Aminoethyl Methacrylate in P22 Viral Capsid via Atom-Transfer Radical Polymerization.
    Qazi S
    Methods Mol Biol; 2018; 1798():85-93. PubMed ID: 29868953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly.
    D'Lima NG; Teschke CM
    J Virol; 2015 Oct; 89(20):10569-79. PubMed ID: 26269173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed coordination chemistry with P22 virus-like particles.
    Uchida M; Morris DS; Kang S; Jolley CC; Lucon J; Liepold LO; LaFrance B; Prevelige PE; Douglas T
    Langmuir; 2012 Jan; 28(4):1998-2006. PubMed ID: 22166052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular interior loading and exterior decoration of a virus-like particle.
    Sharma J; Uchida M; Miettinen HM; Douglas T
    Nanoscale; 2017 Jul; 9(29):10420-10430. PubMed ID: 28702648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the coat protein A-domain in p22 bacteriophage maturation.
    Morris DS; Prevelige PE
    Viruses; 2014 Jul; 6(7):2708-22. PubMed ID: 25025835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials.
    Servid A; Jordan P; O'Neil A; Prevelige P; Douglas T
    Biomacromolecules; 2013 Sep; 14(9):2989-95. PubMed ID: 23957641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue.
    Kim H; Choi H; Bae Y; Kang S
    Biotechnol Bioeng; 2019 Nov; 116(11):2843-2851. PubMed ID: 31329283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles.
    Zhou Z; Bedwell GJ; Li R; Prevelige PE; Gupta A
    Sci Rep; 2014 Jan; 4():3832. PubMed ID: 24452221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle.
    Patterson D; Schwarz B; Avera J; Western B; Hicks M; Krugler P; Terra M; Uchida M; McCoy K; Douglas T
    Bioconjug Chem; 2017 Aug; 28(8):2114-2124. PubMed ID: 28612603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like Particles.
    McCoy K; Uchida M; Lee B; Douglas T
    ACS Nano; 2018 Apr; 12(4):3541-3550. PubMed ID: 29558117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.