These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29868951)

  • 21. Functional analysis of brome mosaic virus coat protein RNA-interacting domains.
    Calhoun SL; Rao AL
    Arch Virol; 2008; 153(2):231-45. PubMed ID: 18066637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction.
    Fox JM; Wang G; Speir JA; Olson NH; Johnson JE; Baker TS; Young MJ
    Virology; 1998 Apr; 244(1):212-8. PubMed ID: 9581792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing two self-assembly mechanisms into one viral capsid protein.
    van Eldijk MB; Wang JC; Minten IJ; Li C; Zlotnick A; Nolte RJ; Cornelissen JJ; van Hest JC
    J Am Chem Soc; 2012 Nov; 134(45):18506-9. PubMed ID: 23101937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic virus capsids.
    Konecny R; Trylska J; Tama F; Zhang D; Baker NA; Brooks CL; McCammon JA
    Biopolymers; 2006 Jun; 82(2):106-20. PubMed ID: 16278831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring structural transitions in icosahedral virus protein cages by site-directed spin labeling.
    Usselman RJ; Walter ED; Willits D; Douglas T; Young M; Singel DJ
    J Am Chem Soc; 2011 Mar; 133(12):4156-9. PubMed ID: 21388197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interrogating viral capsid assembly with ion mobility-mass spectrometry.
    Uetrecht C; Barbu IM; Shoemaker GK; van Duijn E; Heck AJ
    Nat Chem; 2011 Feb; 3(2):126-32. PubMed ID: 21258385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altering the energy landscape of virus self-assembly to generate kinetically trapped nanoparticles.
    Burns K; Mukherjee S; Keef T; Johnson JM; Zlotnick A
    Biomacromolecules; 2010 Feb; 11(2):439-42. PubMed ID: 20136150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Cross-Linked 2-Aminoethyl Methacrylate in P22 Viral Capsid via Atom-Transfer Radical Polymerization.
    Qazi S
    Methods Mol Biol; 2018; 1798():85-93. PubMed ID: 29868953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus.
    Bajaj S; Banerjee M
    Virology; 2016 Sep; 496():106-115. PubMed ID: 27289029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte.
    Chevreuil M; Law-Hine D; Chen J; Bressanelli S; Combet S; Constantin D; Degrouard J; Möller J; Zeghal M; Tresset G
    Nat Commun; 2018 Aug; 9(1):3071. PubMed ID: 30082710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual Site-Selective Presentation of Functional Handles on Protein-Engineered Cowpea Chlorotic Mottle Virus-Like Particles.
    Vervoort DFM; Heiringhoff R; Timmermans SBPE; van Stevendaal MHME; van Hest JCM
    Bioconjug Chem; 2021 May; 32(5):958-963. PubMed ID: 33861931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oligonucleotide Length-Dependent Formation of Virus-Like Particles.
    Maassen SJ; de Ruiter MV; Lindhoud S; Cornelissen JJLM
    Chemistry; 2018 May; 24(29):7456-7463. PubMed ID: 29518273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
    Tama F; Brooks CL
    J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement.
    Schneider WL; Greene AE; Allison RF
    J Virol; 1997 Jun; 71(6):4862-5. PubMed ID: 9151887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer.
    Tscheuschner G; Ponader M; Raab C; Weider PS; Hartfiel R; Kaufmann JO; Völzke JL; Bosc-Bierne G; Prinz C; Schwaar T; Andrle P; Bäßler H; Nguyen K; Zhu Y; Mey ASJS; Mostafa A; Bald I; Weller MG
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure.
    de Wispelaere M; Chaturvedi S; Wilkens S; Rao AL
    Virology; 2011 Oct; 419(1):17-23. PubMed ID: 21864876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of size control and polymorphism in viral capsid assembly.
    Elrad OM; Hagan MF
    Nano Lett; 2008 Nov; 8(11):3850-7. PubMed ID: 18950240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio.
    Cadena-Nava RD; Comas-Garcia M; Garmann RF; Rao AL; Knobler CM; Gelbart WM
    J Virol; 2012 Mar; 86(6):3318-26. PubMed ID: 22205731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.