These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29868968)

  • 1. Controlled Assembly of the Filamentous Chaperone Gamma-Prefoldin into Defined Nanostructures.
    Clark DS; Glover DJ
    Methods Mol Biol; 2018; 1798():293-306. PubMed ID: 29868968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering protein filaments with enhanced thermostability for nanomaterials.
    Glover DJ; Giger L; Kim JR; Clark DS
    Biotechnol J; 2013 Feb; 8(2):228-36. PubMed ID: 22965482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomeric assembly is required for chaperone activity of the filamentous γ-prefoldin.
    Glover DJ; Clark DS
    FEBS J; 2015 Aug; 282(15):2985-97. PubMed ID: 26096656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometrical assembly of ultrastable protein templates for nanomaterials.
    Glover DJ; Giger L; Kim SS; Naik RR; Clark DS
    Nat Commun; 2016 Jun; 7():11771. PubMed ID: 27249579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational shape engineering of the filamentous protein gamma prefoldin through incremental gene truncation.
    Whitehead TA; Je E; Clark DS
    Biopolymers; 2009 Jun; 91(6):496-503. PubMed ID: 19189379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentous chaperone protein-based hydrogel stabilizes enzymes against thermal inactivation.
    Xu D; Lim S; Cao Y; Abad A; Kang AN; Clark DS
    Chem Commun (Camb); 2021 Jun; 57(45):5511-5513. PubMed ID: 33988635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Multicomponent Protein Templates for the Positioning and Stabilization of Enzymes.
    Lim S; Clark DS; Glover DJ
    Methods Mol Biol; 2020; 2073():101-115. PubMed ID: 31612439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii.
    Whitehead TA; Boonyaratanakornkit BB; Höllrigl V; Clark DS
    Protein Sci; 2007 Apr; 16(4):626-34. PubMed ID: 17384227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile multimodal chromatography strategy to rapidly purify protein nanostructures assembled in cell lysates.
    Winter DL; Lebhar H; McCluskey JB; Glover DJ
    J Nanobiotechnology; 2023 Feb; 21(1):66. PubMed ID: 36829140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds.
    Romera D; Couleaud P; Mejias SH; Aires A; Cortajarena AL
    Biochem Soc Trans; 2015 Oct; 43(5):825-31. PubMed ID: 26517889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional nanoscale biomolecular materials.
    Dordick JS
    Biotechnol J; 2013 Feb; 8(2):165-6. PubMed ID: 23192829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the self-assembly of a filamentous hyperthermophilic chaperone by an engineered capping protein.
    Whitehead TA; Meadows AL; Clark DS
    Small; 2008 Jul; 4(7):956-60. PubMed ID: 18576281
    [No Abstract]   [Full Text] [Related]  

  • 13. Assembly of Multicomponent Protein Filaments Using Engineered Subunit Interfaces.
    Glover DJ; Lim S; Xu D; Sloan NB; Zhang Y; Clark DS
    ACS Synth Biol; 2018 Oct; 7(10):2447-2456. PubMed ID: 30234970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Enzyme Activity through Scaffolding on Customizable Self-Assembling Protein Filaments.
    Lim S; Jung GA; Glover DJ; Clark DS
    Small; 2019 May; 15(20):e1805558. PubMed ID: 30920729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Self-Assembling Peptides to Integrate Biomolecules into Functional Supramolecular Biomaterials.
    Liu R; Hudalla GA
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31013712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Fabrication of Well-Organized Protein-Based Nanostructures.
    Zhang JT; Ma J; Kankala RK; Yu Q; Wang SB; Chen AZ
    ACS Appl Bio Mater; 2021 May; 4(5):4039-4048. PubMed ID: 35006821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, crystallization and X-ray diffraction studies of the molecular chaperone prefoldin from Homo sapiens.
    Aikawa Y; Kida H; Nishitani Y; Miki K
    Acta Crystallogr F Struct Biol Commun; 2015 Sep; 71(Pt 9):1189-93. PubMed ID: 26323306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over-expression and characterization of recombinant prefoldin from hyperthermophilic archaeum Pyrococcus furiosus in E. coli.
    Chen H; Yang L; Zhang Y; Yang S
    Biotechnol Lett; 2010 Mar; 32(3):429-34. PubMed ID: 19898753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed Self-Assembly of Hierarchical Nanostructures through Protein-Nanoparticle Coengineering.
    Mout R; Yesilbag Tonga G; Wang LS; Ray M; Roy T; Rotello VM
    ACS Nano; 2017 Apr; 11(4):3456-3462. PubMed ID: 28225593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.