These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 29869222)
1. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Xia Y; Yang Y Behav Res Methods; 2019 Feb; 51(1):409-428. PubMed ID: 29869222 [TBL] [Abstract][Full Text] [Related]
2. The Influence of Number of Categories and Threshold Values on Fit Indices in Structural Equation Modeling with Ordered Categorical Data. Xia Y; Yang Y Multivariate Behav Res; 2018; 53(5):731-755. PubMed ID: 30477318 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Estimation Methods on SEM Fit Indices. Shi D; Maydeu-Olivares A Educ Psychol Meas; 2020 Jun; 80(3):421-445. PubMed ID: 32425213 [TBL] [Abstract][Full Text] [Related]
4. Improving Fit Indices in Structural Equation Modeling with Categorical Data. Savalei V Multivariate Behav Res; 2021; 56(3):390-407. PubMed ID: 32054327 [TBL] [Abstract][Full Text] [Related]
5. The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. Li CH Psychol Methods; 2016 Sep; 21(3):369-87. PubMed ID: 27571021 [TBL] [Abstract][Full Text] [Related]
6. The Problem with Having Two Watches: Assessment of Fit When RMSEA and CFI Disagree. Lai K; Green SB Multivariate Behav Res; 2016; 51(2-3):220-39. PubMed ID: 27014948 [TBL] [Abstract][Full Text] [Related]
7. Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables. Li CH Behav Res Methods; 2021 Oct; 53(5):2191-2213. PubMed ID: 33791955 [TBL] [Abstract][Full Text] [Related]
8. Are fit indices really fit to estimate the number of factors with categorical variables? Some cautionary findings via Monte Carlo simulation. Garrido LE; Abad FJ; Ponsoda V Psychol Methods; 2016 Mar; 21(1):93-111. PubMed ID: 26651983 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis. Nestler S Br J Math Stat Psychol; 2013 Feb; 66(1):127-43. PubMed ID: 22524532 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Model Size Effect on SEM Fit Indices. Shi D; Lee T; Maydeu-Olivares A Educ Psychol Meas; 2019 Apr; 79(2):310-334. PubMed ID: 30911195 [TBL] [Abstract][Full Text] [Related]
11. Detecting Misspecified Multilevel Structural Equation Models with Common Fit Indices: A Monte Carlo Study. Hsu HY; Kwok OM; Lin JH; Acosta S Multivariate Behav Res; 2015; 50(2):197-215. PubMed ID: 26609878 [TBL] [Abstract][Full Text] [Related]
12. The performance of robust test statistics with categorical data. Savalei V; Rhemtulla M Br J Math Stat Psychol; 2013 May; 66(2):201-23. PubMed ID: 22568535 [TBL] [Abstract][Full Text] [Related]
13. On the Computation of the RMSEA and CFI from the Mean-And-Variance Corrected Test Statistic with Nonnormal Data in SEM. Savalei V Multivariate Behav Res; 2018; 53(3):419-429. PubMed ID: 29624085 [TBL] [Abstract][Full Text] [Related]
14. Advantages of Using Unweighted Approximation Error Measures for Model Fit Assessment. Lubbe D Psychometrika; 2023 Jun; 88(2):413-433. PubMed ID: 37071271 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Structural Equation Models for Categorical Outcomes: A New Test Statistic and a Practical Challenge of Interpretation. Monroe S; Cai L Multivariate Behav Res; 2015; 50(6):569-83. PubMed ID: 26717119 [TBL] [Abstract][Full Text] [Related]
16. Incremental Model Fit Assessment in the Case of Categorical Data: Tucker-Lewis Index for Item Response Theory Modeling. Cai L; Chung SW; Lee T Prev Sci; 2023 Apr; 24(3):455-466. PubMed ID: 33970410 [TBL] [Abstract][Full Text] [Related]
17. A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data. Lee T; Shi D Psychol Methods; 2021 Aug; 26(4):466-485. PubMed ID: 33507765 [TBL] [Abstract][Full Text] [Related]
18. Assessing the fit of structural equation models with multiply imputed data. Enders CK; Mansolf M Psychol Methods; 2018 Mar; 23(1):76-93. PubMed ID: 27893216 [TBL] [Abstract][Full Text] [Related]
19. More efficient parameter estimates for factor analysis of ordinal variables by ridge generalized least squares. Yuan KH; Jiang G; Cheng Y Br J Math Stat Psychol; 2017 Nov; 70(3):525-564. PubMed ID: 28547838 [TBL] [Abstract][Full Text] [Related]
20. A structural equation model of environmental correlates of adolescent obesity for age and gender groups. Nesbit KC; Kolobe TH; Sisson SB; Ghement IR Pediatr Obes; 2015 Aug; 10(4):288-95. PubMed ID: 25251036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]