These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29869264)

  • 21. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications.
    Kim JE; Choi JH; Colas M; Kim DH; Lee H
    Biosens Bioelectron; 2016 Jun; 80():543-559. PubMed ID: 26894985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid assembly of CPMV viruses and surface characteristics of different mutants.
    Portney NG; Destito G; Manchester M; Ozkan M
    Curr Top Microbiol Immunol; 2009; 327():59-69. PubMed ID: 19198570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles.
    Sanles-Sobrido M; Exner W; Rodríguez-Lorenzo L; Rodríguez-González B; Correa-Duarte MA; Alvarez-Puebla RA; Liz-Marzán LM
    J Am Chem Soc; 2009 Feb; 131(7):2699-705. PubMed ID: 19182903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
    Wen AM; Infusino M; De Luca A; Kernan DL; Czapar AE; Strangi G; Steinmetz NF
    Bioconjug Chem; 2015 Jan; 26(1):51-62. PubMed ID: 25541212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS.
    Salmon AR; Esteban R; Taylor RW; Hugall JT; Smith CA; Whyte G; Scherman OA; Aizpurua J; Abell C; Baumberg JJ
    Small; 2016 Apr; 12(13):1788-96. PubMed ID: 26865562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SERS-Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements.
    Ambartsumyan O; Gribanyov D; Kukushkin V; Kopylov A; Zavyalova E
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic nanopipette biosensor.
    Masson JF; Breault-Turcot J; Faid R; Poirier-Richard HP; Yockell-Lelièvre H; Lussier F; Spatz JP
    Anal Chem; 2014 Sep; 86(18):8998-9005. PubMed ID: 25157700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots.
    Medintz IL; Sapsford KE; Konnert JH; Chatterji A; Lin T; Johnson JE; Mattoussi H
    Langmuir; 2005 Jun; 21(12):5501-10. PubMed ID: 15924481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PEGylated nanographene-mediated metallic nanoparticle clusters for surface enhanced Raman scattering-based biosensing.
    Ali A; Hwang EY; Choo J; Lim DW
    Analyst; 2018 May; 143(11):2604-2615. PubMed ID: 29741172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cowpea Mosaic Virus Nanoparticles and Empty Virus-Like Particles Show Distinct but Overlapping Immunostimulatory Properties.
    Wang C; Beiss V; Steinmetz NF
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31375592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freeze-Drying To Produce Efficacious CPMV Virus-like Particles.
    Zheng Y; Lee PW; Wang C; Thomas LD; Stewart PL; Steinmetz NF; Pokorski JK
    Nano Lett; 2019 Mar; 19(3):2099-2105. PubMed ID: 30801195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection.
    Ahmed SR; Kim J; Suzuki T; Lee J; Park EY
    Biosens Bioelectron; 2016 Nov; 85():503-508. PubMed ID: 27209577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy.
    Calderon I; Guerrini L; Alvarez-Puebla RA
    Biosensors (Basel); 2021 Jul; 11(7):. PubMed ID: 34356701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of gold nanoparticles in optical biosensors.
    Nie L; Liu F; Ma P; Xiao X
    J Biomed Nanotechnol; 2014 Oct; 10(10):2700-21. PubMed ID: 25992415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva.
    Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N
    Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tobacco Mosaic Virus capsid protein as targets for the self-assembly of gold nanoparticles.
    Zahr OK; Blum AS
    Methods Mol Biol; 2014; 1108():105-12. PubMed ID: 24243244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles.
    Lee C; Wang P; Gaston MA; Weiss AA; Zhang P
    Methods Mol Biol; 2017; 1571():109-116. PubMed ID: 28281252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosensors elaborated on gold nanoparticles, a PM-IRRAS characterisation of the IgG binding efficiency.
    Morel AL; Boujday S; Méthivier C; Krafft JM; Pradier CM
    Talanta; 2011 Jul; 85(1):35-42. PubMed ID: 21645666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.