These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29869300)

  • 1. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System.
    Colyer SL; Evans M; Cosker DP; Salo AIT
    Sports Med Open; 2018 Jun; 4(1):24. PubMed ID: 29869300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision.
    Zago M; Luzzago M; Marangoni T; De Cecco M; Tarabini M; Galli M
    Front Bioeng Biotechnol; 2020; 8():181. PubMed ID: 32195243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SWOT Analysis of Portable and Low-Cost Markerless Motion Capture Systems to Assess Lower-Limb Musculoskeletal Kinematics in Sport.
    Armitano-Lago C; Willoughby D; Kiefer AW
    Front Sports Act Living; 2021; 3():809898. PubMed ID: 35146425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a markerless motion analysis system for manual wheelchair application.
    Rammer J; Slavens B; Krzak J; Winters J; Riedel S; Harris G
    J Neuroeng Rehabil; 2018 Nov; 15(1):96. PubMed ID: 30400917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras.
    Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S
    Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
    Moro M; Marchesi G; Hesse F; Odone F; Casadio M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markerless 2D kinematic analysis of underwater running: A deep learning approach.
    Cronin NJ; Rantalainen T; Ahtiainen JP; Hynynen E; Waller B
    J Biomech; 2019 Apr; 87():75-82. PubMed ID: 30850178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series.
    Steffensen EA; Magalhães F; Knarr BA; Kingston DC
    Res Sq; 2023 Feb; ():. PubMed ID: 36798184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system.
    Kanko RM; Laende EK; Strutzenberger G; Brown M; Selbie WS; DePaul V; Scott SH; Deluzio KJ
    J Biomech; 2021 Jun; 122():110414. PubMed ID: 33915475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.
    Ceseracciu E; Sawacha Z; Cobelli C
    PLoS One; 2014; 9(3):e87640. PubMed ID: 24595273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing.
    Lahkar BK; Muller A; Dumas R; Reveret L; Robert T
    Front Sports Act Living; 2022; 4():939980. PubMed ID: 35958668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease.
    Ripic Z; Signorile JF; Best TM; Jacobs KA; Nienhuis M; Whitelaw C; Moenning C; Eltoukhy M
    J Biomech; 2023 Jun; 155():111645. PubMed ID: 37216895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification.
    Kwon J; Lee Y; Lee J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait.
    Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B
    J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics.
    Van Hooren B; Pecasse N; Meijer K; Essers JMN
    Scand J Med Sci Sports; 2023 Jun; 33(6):966-978. PubMed ID: 36680411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.