These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29869300)
21. Kinematic synergies show good consistency when extracted with a low-cost markerless device and a marker-based motion tracking system. Brambilla C; Scano A Heliyon; 2024 Jun; 10(11):e32042. PubMed ID: 38882310 [TBL] [Abstract][Full Text] [Related]
22. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886 [TBL] [Abstract][Full Text] [Related]
23. Development of a Robust, Simple, and Affordable Human Gait Analysis System Using Bottom-Up Pose Estimation With a Smartphone Camera. Viswakumar A; Rajagopalan V; Ray T; Gottipati P; Parimi C Front Physiol; 2021; 12():784865. PubMed ID: 35069246 [TBL] [Abstract][Full Text] [Related]
24. A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint. Corazza S; Mündermann L; Andriacchi T J Biomech; 2007; 40(15):3510-5. PubMed ID: 17697684 [TBL] [Abstract][Full Text] [Related]
25. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis. Halilaj E; Shin S; Rapp E; Xiang D J Biomech; 2021 Dec; 129():110650. PubMed ID: 34644610 [TBL] [Abstract][Full Text] [Related]
26. Reliability of Markerless Motion Capture Systems for Assessing Movement Screenings. Hauenstein JD; Huebner A; Wagle JP; Cobian ER; Cummings J; Hills C; McGinty M; Merritt M; Rosengarten S; Skinner K; Szemborski M; Wojtkiewicz L Orthop J Sports Med; 2024 Mar; 12(3):23259671241234339. PubMed ID: 38476162 [TBL] [Abstract][Full Text] [Related]
27. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR bioRxiv; 2023 Feb; ():. PubMed ID: 36865211 [TBL] [Abstract][Full Text] [Related]
28. Prediction of gait kinetics using Markerless-driven musculoskeletal modeling. Ripic Z; Theodorakos I; Andersen MS; Signorile JF; Best TM; Jacobs KA; Eltoukhy M J Biomech; 2023 Aug; 157():111712. PubMed ID: 37421911 [TBL] [Abstract][Full Text] [Related]
29. Feasibility of Markerless Motion Capture for Three-Dimensional Gait Assessment in Community Settings. McGuirk TE; Perry ES; Sihanath WB; Riazati S; Patten C Front Hum Neurosci; 2022; 16():867485. PubMed ID: 35754772 [TBL] [Abstract][Full Text] [Related]
30. A review of vision-based motion analysis in sport. Barris S; Button C Sports Med; 2008; 38(12):1025-43. PubMed ID: 19026019 [TBL] [Abstract][Full Text] [Related]
31. Comparison of markerless and marker-based motion capture systems using 95% functional limits of agreement in a linear mixed-effects modelling framework. Das K; de Paula Oliveira T; Newell J Sci Rep; 2023 Dec; 13(1):22880. PubMed ID: 38129434 [TBL] [Abstract][Full Text] [Related]
32. Video-Based Automatic Baby Motion Analysis for Early Neurological Disorder Diagnosis: State of the Art and Future Directions. Leo M; Bernava GM; Carcagnì P; Distante C Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161612 [TBL] [Abstract][Full Text] [Related]
33. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters. Ripic Z; Signorile JF; Kuenze C; Eltoukhy M J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770 [TBL] [Abstract][Full Text] [Related]
34. Markerless motion capture using appearance and inertial data. Wong C; Zhang Z; Lo B; Yang GZ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584 [TBL] [Abstract][Full Text] [Related]
36. Development of a new low-cost computer vision system for human gait analysis: A case study. Bernal-Torres MG; Medellín-Castillo HI; Arellano-González JC Proc Inst Mech Eng H; 2023 May; 237(5):628-641. PubMed ID: 36950949 [TBL] [Abstract][Full Text] [Related]
37. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Mündermann L; Corazza S; Andriacchi TP J Neuroeng Rehabil; 2006 Mar; 3():6. PubMed ID: 16539701 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Torvinen P; Ruotsalainen KS; Zhao S; Cronin N; Ohtonen O; Linnamo V Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391622 [TBL] [Abstract][Full Text] [Related]
39. Monocular 3D Human Pose Markerless Systems for Gait Assessment. Zhu X; Boukhennoufa I; Liew B; Gao C; Yu W; McDonald-Maier KD; Zhai X Bioengineering (Basel); 2023 May; 10(6):. PubMed ID: 37370583 [TBL] [Abstract][Full Text] [Related]
40. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation. Hellsten T; Karlsson J; Shamsuzzaman M; Pulkkis G Rehabil Process Outcome; 2021; 10():11795727211022330. PubMed ID: 34987303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]