These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29869300)

  • 41. Bridging the lab-to-field gap using machine learning: a narrative review.
    Mundt M
    Sports Biomech; 2023 Apr; ():1-20. PubMed ID: 37073501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anatomical-Marker-Driven 3D Markerless Human Motion Capture.
    Jatesiktat P; Lim GM; Lim WS; Ang WT
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38980775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological reliability of a movement analysis assessment using a markerless motion capture system.
    Philipp NM; Fry AC; Mosier EM; Cabarkapa D; Nicoll JX; Sontag SA
    Front Sports Act Living; 2024; 6():1417965. PubMed ID: 39258009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System.
    Mauntel TC; Padua DA; Stanley LE; Frank BS; DiStefano LJ; Peck KY; Cameron KL; Marshall SW
    J Athl Train; 2017 Nov; 52(11):1002-1009. PubMed ID: 29048200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Principal component analysis of whole-body kinematics using markerless motion capture during static balance tasks.
    Eveleigh KJ; Deluzio KJ; Scott SH; Laende EK
    J Biomech; 2023 May; 152():111556. PubMed ID: 37004391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Markerless gait analysis through a single camera and computer vision.
    Wang H; Su B; Lu L; Jung S; Qing L; Xie Z; Xu X
    J Biomech; 2024 Mar; 165():112027. PubMed ID: 38430608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using deep neural networks for kinematic analysis: Challenges and opportunities.
    Cronin NJ
    J Biomech; 2021 Jun; 123():110460. PubMed ID: 34029787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Technological advancements in the analysis of human motion and posture management through digital devices.
    Roggio F; Ravalli S; Maugeri G; Bianco A; Palma A; Di Rosa M; Musumeci G
    World J Orthop; 2021 Jul; 12(7):467-484. PubMed ID: 34354935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications.
    Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J
    PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Agreement between a markerless and a marker-based motion capture systems for balance related quantities.
    Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T
    J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toward the markerless and automatic analysis of kinematic features: A toolkit for gesture and movement research.
    Trujillo JP; Vaitonyte J; Simanova I; Özyürek A
    Behav Res Methods; 2019 Apr; 51(2):769-777. PubMed ID: 30143970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques.
    Miranda DL; Schwartz JB; Loomis AC; Brainerd EL; Fleming BC; Crisco JJ
    J Biomech Eng; 2011 Dec; 133(12):121002. PubMed ID: 22206419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.
    Corazza S; Gambaretto E; Mündermann L; Andriacchi TP
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):806-12. PubMed ID: 19272951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing Trajectories and Inverse Kinematics for Biomechanical Analysis of Markerless Motion Capture Data.
    Cotton RJ; DeLillo A; Cimorelli A; Shah K; Peiffer JD; Anarwala S; Abdou K; Karakostas T
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fifty years of performance-related sports biomechanics research.
    Yeadon MR; Pain MTG
    J Biomech; 2023 Jun; 155():111666. PubMed ID: 37263075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative Comparison of Hand Kinematics Measured with a Markerless Commercial Head-Mounted Display and a Marker-Based Motion Capture System in Stroke Survivors.
    Casile A; Fregna G; Boarini V; Paoluzzi C; Manfredini F; Lamberti N; Baroni A; Straudi S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.