BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29869407)

  • 1. Use of the EndoMaster robot-assisted surgical system in transoral robotic surgery: A cadaveric study.
    Tay G; Tan HK; Nguyen TK; Phee SJ; Iyer NG
    Int J Med Robot; 2018 Aug; 14(4):e1930. PubMed ID: 29869407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a computer-assisted flexible endoscope system for transoral surgery of the hypopharynx and upper esophagus.
    Friedrich DT; Scheithauer MO; Greve J; Rotter N; Doescher J; Hoffmann TK; Schuler PJ
    Eur Arch Otorhinolaryngol; 2017 May; 274(5):2287-2293. PubMed ID: 28236012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery.
    Holsinger FC
    Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system.
    Tsang RK; Holsinger FC
    Laryngoscope; 2016 Oct; 126(10):2257-62. PubMed ID: 27312523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System.
    Funk E; Goldenberg D; Goyal N
    Head Neck; 2017 Jun; 39(6):1218-1225. PubMed ID: 28301093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A new flexible endoscopy-system for the transoral resection of head and neck tumors].
    Mattheis S; Lang S
    Laryngorhinootologie; 2015 Jan; 94(1):25-8. PubMed ID: 25054545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Advantages of a Single-Port, Operator-Controlled Flexible Endoscope System for Transoral Surgery of the Larynx.
    Friedrich DT; Scheithauer MO; Greve J; Duvvuri U; Sommer F; Hoffmann TK; Schuler PJ
    Ann Otol Rhinol Laryngol; 2015 Aug; 124(8):655-62. PubMed ID: 25757631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadaveric feasibility study of a teleoperated parallel continuum robot with variable stiffness for transoral surgery.
    Li C; Gu X; Xiao X; Lim CM; Ren H
    Med Biol Eng Comput; 2020 Sep; 58(9):2063-2069. PubMed ID: 32642908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical analysis of robotic surgery for laryngeal tumours.
    Esteban F; Menoyo A; Abrante A
    Acta Otorrinolaringol Esp; 2014; 65(6):365-72. PubMed ID: 24626048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.
    Schuler PJ; Hoffmann TK; Veit JA; Rotter N; Friedrich DT; Greve J; Scheithauer MO
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 27196407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved transoral dissection of the tongue base with a next-generation robotic surgical system.
    Chen MM; Orosco RK; Lim GC; Holsinger FC
    Laryngoscope; 2018 Jan; 128(1):78-83. PubMed ID: 28681924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transoral radical tonsillectomy and retropharyngeal lymph node dissection with a flexible next generation robotic surgical system.
    Tsang RK; Wong EWY; Chan JYK
    Head Neck; 2018 Jun; 40(6):1296-1298. PubMed ID: 29473252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system.
    Orosco RK; Tam K; Nakayama M; Holsinger FC; Spriano G
    Head Neck; 2019 Jul; 41(7):2143-2147. PubMed ID: 30775823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a comprehensive competency-based transoral robotic surgery training curriculum with ex vivo dissection models.
    Sobel RH; Blanco R; Ha PK; Califano JA; Kumar R; Richmon JD
    Head Neck; 2016 Oct; 38(10):1553-63. PubMed ID: 27152633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy: A comparative preclinical study.
    Tateya I; Koh YW; Tsang RK; Hong SS; Uozumi R; Kishimoto Y; Sugimoto T; Holsinger FC
    Head Neck; 2018 Jan; 40(1):16-23. PubMed ID: 29130568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic transoral periosteal thyroidectomy (TOPOT): experience in two cadavers.
    Lee HY; Richmon JD; Walvekar RR; Holsinger C; Kim HY
    J Laparoendosc Adv Surg Tech A; 2015 Feb; 25(2):139-42. PubMed ID: 25629368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Compliant Transoral Surgical Robotic System Based on a Parallel Flexible Mechanism.
    Gu X; Li C; Xiao X; Lim CM; Ren H
    Ann Biomed Eng; 2019 Jun; 47(6):1329-1344. PubMed ID: 30863909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of the Highly Articulated Flex Robotic System for Head and Neck Procedures: A Cadaveric Study.
    Newsome H; Mandapathil M; Koh YW; Duvvuri U
    Ann Otol Rhinol Laryngol; 2016 Sep; 125(9):758-63. PubMed ID: 27287677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Assessment of a Transoral Robotic Surgery Curriculum to Train Otolaryngology Residents.
    White J; Sharma A
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(2):69-76. PubMed ID: 29847824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented reality for image guidance in transoral robotic surgery.
    Chan JYK; Holsinger FC; Liu S; Sorger JM; Azizian M; Tsang RKY
    J Robot Surg; 2020 Aug; 14(4):579-583. PubMed ID: 31555957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.