These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29869614)

  • 1. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes.
    Vozzi F; Logrand F; Cabiati M; Cicione C; Boffito M; Carmagnola I; Vitale N; Gori M; Brancaccio M; Del Ry S; Gastaldi D; Cattarinuzzi E; Vena P; Rainer A; Domenici C; Ciardelli G; Sartori S
    Biomed Mater; 2018 Jul; 13(5):055006. PubMed ID: 29869614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration.
    Jamadi ES; Ghasemi-Mobarakeh L; Morshed M; Sadeghi M; Prabhakaran MP; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():106-16. PubMed ID: 27040201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.
    Silvestri A; Sartori S; Boffito M; Mattu C; Di Rienzo AM; Boccafoschi F; Ciardelli G
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1002-13. PubMed ID: 24307433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering.
    Kai D; Prabhakaran MP; Jin G; Ramakrishna S
    J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):379-86. PubMed ID: 21681953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.
    Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N
    J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering.
    Prabhakaran MP; Kai D; Ghasemi-Mobarakeh L; Ramakrishna S
    Biomed Mater; 2011 Oct; 6(5):055001. PubMed ID: 21813957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Ebrahimi-Barough S; Azami M; Vahdat S; Baharvand H
    J Biomed Mater Res A; 2015 Oct; 103(10):3179-87. PubMed ID: 25765879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique.
    Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C
    Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J; Ye L; Zhang A; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradable segmented polyurethane elastomers for bone tissue engineering: effect of polycaprolactone content.
    Kavlock KD; Whang K; Guelcher SA; Goldstein AS
    J Biomater Sci Polym Ed; 2013; 24(1):77-93. PubMed ID: 22304961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering.
    He W; Yong T; Teo WE; Ma Z; Ramakrishna S
    Tissue Eng; 2005; 11(9-10):1574-88. PubMed ID: 16259611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds.
    Hernández-Córdova R; Mathew DA; Balint R; Carrillo-Escalante HJ; Cervantes-Uc JM; Hidalgo-Bastida LA; Hernández-Sánchez F
    J Biomed Mater Res A; 2016 Aug; 104(8):1912-21. PubMed ID: 26991636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction.
    Venugopal J; Rajeswari R; Shayanti M; Sridhar R; Sundarrajan S; Balamurugan R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1325-31. PubMed ID: 23827578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.
    Hussain A; Collins G; Yip D; Cho CH
    Biotechnol Bioeng; 2013 Feb; 110(2):637-47. PubMed ID: 22991229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.