These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29869956)

  • 1. How Does Botrytis cinerea Infect Red Raspberry?
    Kozhar O; Peever TL
    Phytopathology; 2018 Nov; 108(11):1287-1298. PubMed ID: 29869956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association Between Weather Variables, Airborne Inoculum Concentration, and Raspberry Fruit Rot Caused by Botrytis cinerea.
    Carisse O; McNealis V; Kriss A
    Phytopathology; 2018 Jan; 108(1):70-82. PubMed ID: 28884623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infection of raspberry leaves by Botrytis cinerea in relation to leaf and cane age.
    Xu XM; Wedgwood E; Berrie AM; O'Neill T
    Commun Agric Appl Biol Sci; 2009; 74(3):761-70. PubMed ID: 20222562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Evolution in Anthropogenic Environments:
    Kozhar O; Larsen MM; Grünwald NJ; Peever TL
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral evidence for contextual olfactory-mediated avoidance of the ubiquitous phytopathogen Botrytis cinerea by Drosophila suzukii.
    Cha DH; Hesler SP; Brind'Amour G; Wentworth KS; Villani S; Cox KD; Boucher MT; Wallingford A; Park SK; Nyrop J; Loeb GM
    Insect Sci; 2020 Aug; 27(4):771-779. PubMed ID: 31087762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.
    Janisiewicz WJ; Takeda F; Glenn DM; Camp MJ; Jurick WM
    Phytopathology; 2016 Apr; 106(4):386-94. PubMed ID: 26714103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postharvest Incidence of Stem End Rot in 'Hayward' Kiwifruit Is Related to Preharvest
    Riquelme-Toledo D; Valdés-Gómez H; Fermaud M; Zoffoli JP
    Plant Dis; 2020 Mar; 104(3):823-832. PubMed ID: 31898927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of
    Riquelme D; Aravena Z; Valdés-Gómez H; Latorre BA; Díaz GA; Zoffoli JP
    Plant Dis; 2021 Aug; 105(8):2129-2140. PubMed ID: 33258430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents.
    Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N
    Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of canopy manipulation on cane and fruit Botrytis in protected raspberry.
    O'Neill T; Berrie AM; Wedgwood E; Allen J; Xu XM
    Commun Agric Appl Biol Sci; 2009; 74(3):633-43. PubMed ID: 20222545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infection Risk and Critical Period for the Postharvest Control of Gray Mold (Botrytis cinerea) on Blueberry in Chile.
    Rivera SA; Zoffoli JP; Latorre BA
    Plant Dis; 2013 Aug; 97(8):1069-1074. PubMed ID: 30722487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation.
    Kim JH; Lee SH; Kim CS; Lim EK; Choi KH; Kong HG; Kim DW; Lee SW; Moon BJ
    J Microbiol Biotechnol; 2007 Mar; 17(3):438-44. PubMed ID: 18050947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Botrytis Blossom Blight of Japanese Plums Caused by Botrytis cinerea and B. prunorum sp. nov. in Chile.
    Ferrada EE; Latorre BA; Zoffoli JP; Castillo A
    Phytopathology; 2016 Feb; 106(2):155-65. PubMed ID: 26474331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 14 raspberry cultivars by solid-phase microextraction and relationship with gray mold susceptibility.
    Aprea E; Carlin S; Giongo L; Grisenti M; Gasperi F
    J Agric Food Chem; 2010 Jan; 58(2):1100-5. PubMed ID: 20025221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains.
    Plesken C; Weber RW; Rupp S; Leroch M; Hahn M
    Appl Environ Microbiol; 2015 Oct; 81(20):7048-56. PubMed ID: 26231644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.
    Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N
    Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of
    Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V
    Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.