BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 29869956)

  • 1. How Does Botrytis cinerea Infect Red Raspberry?
    Kozhar O; Peever TL
    Phytopathology; 2018 Nov; 108(11):1287-1298. PubMed ID: 29869956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains.
    Plesken C; Weber RW; Rupp S; Leroch M; Hahn M
    Appl Environ Microbiol; 2015 Oct; 81(20):7048-56. PubMed ID: 26231644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botrytis fruit rot management: What have we achieved so far?
    Dwivedi M; Singh P; Pandey AK
    Food Microbiol; 2024 Sep; 122():104564. PubMed ID: 38839226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Botrytis cinerea differentially induces postharvest antioxidant responses in 'Braeburn' and 'Golden Delicious' apple fruit.
    Bui TT; Wright SA; Falk AB; Vanwalleghem T; Van Hemelrijck W; Hertog ML; Keulemans J; Davey MW
    J Sci Food Agric; 2019 Oct; 99(13):5662-5670. PubMed ID: 31150567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spread of
    Rupp S; Weber RW; Rieger D; Detzel P; Hahn M
    Front Microbiol; 2016; 7():2075. PubMed ID: 28096799
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of an indirect competitive enzyme-linked immunosorbent assay applied to the Botrytis cinerea quantification in tissues of postharvest fruits.
    Fernández-Baldo MA; Fernández JG; Pereira SV; Messina GA; Salinas E; Raba J; Sanz Ferramola MI
    BMC Microbiol; 2011 Oct; 11():220. PubMed ID: 21970317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection.
    Kong W; Chen N; Liu T; Zhu J; Wang J; He X; Jin Y
    PLoS One; 2015; 10(11):e0142221. PubMed ID: 26536465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and Opportunities Arising from Host-
    Spada M; Pugliesi C; Fambrini M; Pecchia S
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation.
    Iwaniuk P; Lozowicka B
    Planta; 2022 Feb; 255(3):61. PubMed ID: 35141769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Loop-Mediated Isothermal Amplification Assay for the Identification of
    Vielba-Fernández A; Dowling M; Schnabel G; Fernández-Ortuño D
    Plant Dis; 2023 Nov; 107(11):3414-3421. PubMed ID: 37079017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New and Antifungal Diterpenoids of Sunflower against Gray Mold.
    Zhao Y; Wang ZJ; Wang CB; Tan BY; Luo XD
    J Agric Food Chem; 2023 Nov; 71(44):16647-16656. PubMed ID: 37877578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kiwifruit resistance to gray mold is enhanced by yeast-induced modulation of the endophytic microbiome.
    Liao Q; Zhao Y; Wang Z; Yu L; Su Q; Li J; Yuan A; Wang J; Tian D; Lin C; Huang X; Li W; Sun Z; Wang Q; Liu J
    Sci Total Environ; 2024 Jul; 932():173109. PubMed ID: 38729361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Compounds That Modulate the Development of the Fungus
    Rosero-Hernández ED; Moraga J; Collado IG; Echeverri F
    Plants (Basel); 2019 Apr; 8(5):. PubMed ID: 31027383
    [No Abstract]   [Full Text] [Related]  

  • 15. Investigating the inoculum dynamics of Cladosporium on the surface of raspberry fruits and in the air.
    Farwell LH; Papp-Rupar M; Deakin G; Magan N; Xu X
    Environ Microbiol; 2024 Mar; 26(3):e16613. PubMed ID: 38509764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of
    Ha STT; Kim YT; Jeon YH; Choi HW; In BC
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34207351
    [No Abstract]   [Full Text] [Related]  

  • 17. Integration of mathematical modeling and target-based application of biocontrol agents for the control of Botrytis cinerea in vineyards.
    Altieri V; Rossi V; Fedele G
    Pest Manag Sci; 2024 Apr; ():. PubMed ID: 38634563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement.
    Kwasiborski A; Bajji M; Renaut J; Delaplace P; Jijakli MH
    PLoS One; 2014; 9(3):e91434. PubMed ID: 24614090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection Strategies Deployed by
    Petrasch S; Silva CJ; Mesquida-Pesci SD; Gallegos K; van den Abeele C; Papin V; Fernandez-Acero FJ; Knapp SJ; Blanco-Ulate B
    Front Plant Sci; 2019; 10():223. PubMed ID: 30881367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Detection of
    Ha STT; Kim YT; In BC
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140414
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.