These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29869976)

  • 1. The future of SCI rehabilitation: Understanding the impact of exoskeletons on gait mechanics.
    Gorgey AS; Holman ME
    J Spinal Cord Med; 2018 Sep; 41(5):544-546. PubMed ID: 29869976
    [No Abstract]   [Full Text] [Related]  

  • 2. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 5. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinician-Focused Overview of Bionic Exoskeleton Use After Spinal Cord Injury.
    Palermo AE; Maher JL; Baunsgaard CB; Nash MS
    Top Spinal Cord Inj Rehabil; 2017; 23(3):234-244. PubMed ID: 29339899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trunk muscle activity patterns and motion patterns of patients with motor complete spinal cord injury at T8 and T10 walking with different un-powered exoskeletons.
    Guan X; Kuai S; Ji L; Wang R; Ji R
    J Spinal Cord Med; 2017 Jul; 40(4):463-470. PubMed ID: 28514926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons.
    Stampacchia G; Rustici A; Bigazzi S; Gerini A; Tombini T; Mazzoleni S
    NeuroRehabilitation; 2016 Jun; 39(2):277-83. PubMed ID: 27372363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design recommendations for exoskeletons: Perspectives of individuals with spinal cord injury.
    van Silfhout L; Hosman AJF; van de Meent H; Bartels RHMA; Edwards MJR
    J Spinal Cord Med; 2023 Mar; 46(2):256-261. PubMed ID: 34062111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.
    Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M
    World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Exoskeleton Training Intervention on Net Loading Force in Chronic Spinal Cord Injury.
    Husain SR; Ramanujam A; Momeni K; Forrest GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2793-2796. PubMed ID: 30440981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.