BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29870252)

  • 1. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement.
    Ott AA; Packard MH; Ortuño MA; Johnson A; Suding VP; Cramer CJ; Topczewski JJ
    J Org Chem; 2018 Aug; 83(15):8214-8224. PubMed ID: 29870252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allylic azides: synthesis, reactivity, and the Winstein rearrangement.
    Carlson AS; Topczewski JJ
    Org Biomol Chem; 2019 May; 17(18):4406-4429. PubMed ID: 30969292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterically biased 3,3-sigmatropic rearrangement of chiral allylic azides: application to the total syntheses of alkaloids.
    Lauzon S; Tremblay F; Gagnon D; Godbout C; Chabot C; Mercier-Shanks C; Perreault S; DeSève H; Spino C
    J Org Chem; 2008 Aug; 73(16):6239-50. PubMed ID: 18642871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Claisen rearrangements of equilibrating allylic azides.
    Craig D; Harvey JW; O'Brien AG; White AJ
    Org Biomol Chem; 2011 Oct; 9(20):7057-61. PubMed ID: 21879133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Winstein rearrangement: equilibrium and mechanism.
    Ott AA; Topczewski JJ
    ARKIVOC; 2019; 2019(1):1-17. PubMed ID: 31245793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective Dynamic Cyclization of Allylic Azides: Synthesis of Tetralins, Chromanes, and Tetrahydroquinolines.
    Porter MR; Shaker RM; Calcanas C; Topczewski JJ
    J Am Chem Soc; 2018 Jan; 140(4):1211-1214. PubMed ID: 29303567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Racemization of Activated Organic Azides.
    Ott AA; Topczewski JJ
    Org Lett; 2018 Nov; 20(22):7253-7256. PubMed ID: 30394752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The allylic azide rearrangement: achieving selectivity.
    Feldman AK; Colasson B; Sharpless KB; Fokin VV
    J Am Chem Soc; 2005 Oct; 127(39):13444-5. PubMed ID: 16190677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and catalyzed [3,3]-phosphorimidate rearrangements.
    Chen B; Mapp AK
    J Am Chem Soc; 2005 May; 127(18):6712-8. PubMed ID: 15869293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of (±)-amathaspiramide F and discovery of an unusual stereocontrolling element for the [2,3]-Stevens rearrangement.
    Soheili A; Tambar UK
    Org Lett; 2013 Oct; 15(19):5138-41. PubMed ID: 24066807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of (-)-agelastatin A by [3.3] sigmatropic rearrangement of allyl cyanate.
    Ichikawa Y; Yamaoka T; Nakano K; Kotsuki H
    Org Lett; 2007 Aug; 9(16):2989-92. PubMed ID: 17602639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel sequential sigmatropic rearrangements of allylic diols: application to the total synthesis of (-)-kainic acid.
    Kitamoto K; Sampei M; Nakayama Y; Sato T; Chida N
    Org Lett; 2010 Dec; 12(24):5756-9. PubMed ID: 21105709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly diastereoselective allylic azide formation and isomerization. Synthesis of 3(2'-amino)-beta-lactams.
    Cardillo G; Fabbroni S; Gentilucci L; Perciaccante R; Piccinelli F; Tolomelli A
    Org Lett; 2005 Feb; 7(4):533-6. PubMed ID: 15704887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.
    Kou KG; Dong VM
    Org Biomol Chem; 2015 Jun; 13(21):5844-7. PubMed ID: 25940066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies of [2,3]-sigmatropic rearrangements of allylic selenoxides and selenimides.
    Bayse CA; Antony S
    Molecules; 2009 Aug; 14(9):3229-36. PubMed ID: 19783921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereocontrolled route to vicinal diamines by [3.3] sigmatropic rearrangement of allyl cyanate: asymmetric synthesis of anti-(2R,3R)- and syn-(2R,3S)-2,3-diaminobutanoic acids.
    Ichikawa Y; Egawa H; Ito T; Isobe M; Nakano K; Kotsuki H
    Org Lett; 2006 Dec; 8(25):5737-40. PubMed ID: 17134260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of (-)-morphine: application of sequential Claisen/Claisen rearrangement of an allylic vicinal diol.
    Ichiki M; Tanimoto H; Miwa S; Saito R; Sato T; Chida N
    Chemistry; 2013 Jan; 19(1):264-9. PubMed ID: 23180383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An asymmetric allylic alkylation-Smiles rearrangement-sulfinate addition sequence to construct chiral cyclic sulfones.
    Wang QG; Zhou QQ; Deng JG; Chen YC
    Org Lett; 2013 Sep; 15(18):4786-9. PubMed ID: 23992537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective palladium catalyzed kinetic resolution and enantioselective substitution of racemic allylic carbonates with sulfur nucleophiles: asymmetric synthesis of allylic sulfides, allylic sulfones, and allylic alcohols.
    Gais HJ; Jagusch T; Spalthoff N; Gerhards F; Frank M; Raabe G
    Chemistry; 2003 Sep; 9(17):4202-21. PubMed ID: 12953206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic resolution of primary allylic amines via palladium-catalyzed asymmetric allylic alkylation of malononitriles.
    Wang Y; Xu YN; Fang GS; Kang HJ; Gu Y; Tian SK
    Org Biomol Chem; 2015 May; 13(19):5367-71. PubMed ID: 25880785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.