These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29870264)

  • 21. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of Structure-Performance Relation for Surfactants Used as Antiagglomerants for Hydrate Management.
    Bui T; Phan A; Monteiro D; Lan Q; Ceglio M; Acosta E; Krishnamurthy P; Striolo A
    Langmuir; 2017 Mar; 33(9):2263-2274. PubMed ID: 28110536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular insights into clathrate hydrate nucleation at an ice-solution interface.
    Pirzadeh P; Kusalik PG
    J Am Chem Soc; 2013 May; 135(19):7278-87. PubMed ID: 23638636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functionalized Nanoparticles for the Dispersion of Gas Hydrates in Slurry Flow.
    Zhang X; Gong J; Yang X; Slupe B; Jin J; Wu N; Sum AK
    ACS Omega; 2019 Aug; 4(8):13496-13508. PubMed ID: 31460479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic and Antagonistic Effects of Aromatics on the Agglomeration of Gas Hydrates.
    Bui T; Monteiro D; Vo L; Striolo A
    Sci Rep; 2020 Mar; 10(1):5496. PubMed ID: 32218443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking all-vapor instant gas-hydrate formation and guest molecule populations: a possible probe for molecules trapped in water nanodroplets.
    Uras-Aytemiz N; Cwiklik L; Paul Devlin J
    J Chem Phys; 2012 Nov; 137(20):204501. PubMed ID: 23206013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic methods in gas hydrate research.
    Rauh F; Mizaikoff B
    Anal Bioanal Chem; 2012 Jan; 402(1):163-73. PubMed ID: 22094590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management.
    Sicard F; Bui T; Monteiro D; Lan Q; Ceglio M; Burress C; Striolo A
    Langmuir; 2018 Aug; 34(33):9701-9710. PubMed ID: 30058809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental study on hydrate anti-agglomeration in the presence of rhamnolipid.
    Hou G; Liang D; Li X
    RSC Adv; 2018 Nov; 8(69):39511-39519. PubMed ID: 35558046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Basis for the Inhibition of Gas Hydrates by α-Helical Antifreeze Proteins.
    Sun T; Davies PL; Walker VK
    Biophys J; 2015 Oct; 109(8):1698-705. PubMed ID: 26488661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.
    Smith JD; Meuler AJ; Bralower HL; Venkatesan R; Subramanian S; Cohen RE; McKinley GH; Varanasi KK
    Phys Chem Chem Phys; 2012 May; 14(17):6013-20. PubMed ID: 22441203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of additives and metal rods on the nucleation and growth of gas hydrates.
    Li J; Liang D; Guo K; Wang R
    J Colloid Interface Sci; 2005 Mar; 283(1):223-30. PubMed ID: 15694442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlating Antiagglomerant Performance with Gas Hydrate Cohesion.
    Phan A; Stamatakis M; Koh CA; Striolo A
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40002-40012. PubMed ID: 34382786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.
    Lee BR; Sum AK
    Langmuir; 2015 Apr; 31(13):3884-8. PubMed ID: 25785915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing Ultra-Low Hydrate Adhesion Surfaces by Interfacial Spreading of Water-Immiscible Barrier Films.
    Das A; Farnham TA; Bengaluru Subramanyam S; Varanasi KK
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21496-21502. PubMed ID: 28281747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Communication: quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols.
    Uras-Aytemiz N; Monreal IA; Devlin JP
    J Chem Phys; 2011 Oct; 135(14):141103. PubMed ID: 22010686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.
    Cao X; Huang Y; Li W; Zheng Z; Jiang X; Su Y; Zhao J; Liu C
    Phys Chem Chem Phys; 2016 Jan; 18(4):3272-9. PubMed ID: 26745181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture.
    Sun M; Firoozabadi A
    J Colloid Interface Sci; 2013 Jul; 402():312-9. PubMed ID: 23660023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in situ method on kinetics of gas hydrates.
    Masoudi A; Jafari P; Nazari M; Kashyap V; Eslami B; Irajizad P; Ghasemi H
    Rev Sci Instrum; 2019 Mar; 90(3):035111. PubMed ID: 30927797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Instant conversion of air to a clathrate hydrate: CO(2) hydrates directly from moist air and moist CO(2)(g).
    Devlin JP; Monreal IA
    J Phys Chem A; 2010 Dec; 114(50):13129-33. PubMed ID: 21105676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.