These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 29870379)
1. 3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network. Shan H; Zhang Y; Yang Q; Kruger U; Kalra MK; Sun L; Cong W; Wang G IEEE Trans Med Imaging; 2018 Jun; 37(6):1522-1534. PubMed ID: 29870379 [TBL] [Abstract][Full Text] [Related]
2. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
3. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
4. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
5. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
6. A Review of deep learning methods for denoising of medical low-dose CT images. Zhang J; Gong W; Ye L; Wang F; Shangguan Z; Cheng Y Comput Biol Med; 2024 Mar; 171():108112. PubMed ID: 38387380 [TBL] [Abstract][Full Text] [Related]
7. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732 [TBL] [Abstract][Full Text] [Related]
8. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
9. Weakly supervised low-dose computed tomography denoising based on generative adversarial networks. Liao P; Zhang X; Wu Y; Chen H; Du W; Liu H; Yang H; Zhang Y Quant Imaging Med Surg; 2024 Aug; 14(8):5571-5590. PubMed ID: 39144020 [TBL] [Abstract][Full Text] [Related]
10. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network. Wang G; Hu X Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of residual attention modules into two neural networks for low-dose CT denoising. Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681 [TBL] [Abstract][Full Text] [Related]
12. Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Tang C; Li J; Wang L; Li Z; Jiang L; Cai A; Zhang W; Liang N; Li L; Yan B Comput Math Methods Med; 2019; 2019():8639825. PubMed ID: 31885686 [TBL] [Abstract][Full Text] [Related]
13. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning. Li M; Wang J; Chen Y; Tang Y; Wu Z; Qi Y; Jiang H; Zheng J; Tsui BMW IEEE Trans Med Imaging; 2023 Sep; 42(9):2616-2630. PubMed ID: 37030685 [TBL] [Abstract][Full Text] [Related]
14. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444 [TBL] [Abstract][Full Text] [Related]
15. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
16. An unsupervised two-step training framework for low-dose computed tomography denoising. Kim W; Lee J; Choi JH Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026 [TBL] [Abstract][Full Text] [Related]
17. Two stage residual CNN for texture denoising and structure enhancement on low dose CT image. Huang L; Jiang H; Li S; Bai Z; Zhang J Comput Methods Programs Biomed; 2020 Feb; 184():105115. PubMed ID: 31627148 [TBL] [Abstract][Full Text] [Related]
18. A novel denoising method for low-dose CT images based on transformer and CNN. Zhang J; Shangguan Z; Gong W; Cheng Y Comput Biol Med; 2023 Sep; 163():107162. PubMed ID: 37327755 [TBL] [Abstract][Full Text] [Related]
19. Deep-learning-based direct inversion for material decomposition. Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942 [TBL] [Abstract][Full Text] [Related]
20. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising. Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]